返回上一页 文章阅读 登录

吕陈君:AI极简史:从通用计算机到通用学习机

更新时间:2019-10-24 19:51:33
作者: 吕陈君  


01 引言:计算机≠人工智能

  

   2019世界人工智能大会上,马云和马斯克两位互联网大佬关于人工智能(AI)针锋相对的激辩,吊足了大家的胃口,也显示出人们对未来AI技术发展的不同理解。

  

   在开幕式上,“钢铁侠”马斯克坚定地表示:“计算机已经在很多方面比人更聪明了,人们和计算机下围棋像你和宙斯斗争一样没有希望的,我们差太远了”,“人类智力的追求在越来越少的方面比计算机好,每个方面以后都会被计算机越来越多的超越,这是肯定的”。

  

   对此,“太极拳七段”马老师则以中国人特有的智慧,风淡云轻地辩驳道:“和电脑比赛下棋是愚蠢的,只有愚蠢的人才会跟汽车比谁跑得快”,“人类发明了计算机,我从来没有看到计算机发明一个人”,“根据科学,人从来无法创造一个比自己更聪明的动物”。

  

   当然,马斯克对马云的观点也“非常不同意”。两人孰对孰错呢?

  

   我们先不说将来AI会不会超越人类,只说两位大佬都用到了同一个词——“计算机”,看来两位“大马哥”都把AI等同于计算机了。如果按照严格的科学定义,把计算机视为一台严格遵照机械程序执行任务的图灵机,那么,计算机究竟能不能模仿人类的全部能力,这在理论上还是存在重大争议的。计算机≠人工智能,这是AI界的主流看法,但人们往往把这两个概念混为一谈。

  

   计算机跟人工智能的关系,远比人们通常理解的更复杂。一部计算机发展史,就是一部人工智能的逐梦史。但现实和梦想之间,却隔着深不可测的海洋。

  

02 图灵机的创世纪

  

   20世纪后半叶,计算机技术的广泛应用,个人计算机(PC)的全球普及,这或许是人类历史上意义最为深远的技术革命,托夫勒称之为“第三次浪潮”,人类社会继农业阶段、工业阶段后,进入到了信息化阶段。通用计算机(图灵机)的发明,就是这一伟大历史转折的关键点。

  

   说到计算机,其实人类很早就使用各种计算装置了。从中国古代的算盘,古希腊安提凯希拉天文计算装置,到17世纪帕斯卡和莱布尼兹设计的“加法机”,19世纪巴贝奇设计的“差分机”,再到20世纪上半叶IBM早期推出的各种机械?电子数字计算机,这些计算装置无一例外有一个共同特点,即它们都是专用计算机而非通用计算机。也就是说,它设计用来做什么,就只能做什么,别的什么都不能做,其程序和计算是分离的。所以,如果要解决不同的计算任务,就得设计、制作不同的计算装置,硬件、软件都得重新再做。但人类要解决的计算任务是源源不断、无穷无尽的,原则上就得做无穷多台不同的计算机才行。所以,专用计算机是不能普及化的,制作成本就会非常高,只能用于特殊的计算任务,或工业与军事上的重要目标。

  

   而通用计算机的出现就改变了这种技术瓶颈,使得计算机普及化成为可能。什么是通用计算机?简单说,就是一台可以完成任何计算任务的机器。这样一来,我们只要在机器内部装入不同的计算程序,它就可以执行任何计算任务,即只需更换软件,毋须更换硬件。现在我们的个人电脑,既可以听音乐、玩游戏、看视频,也可以做数据分析、文字处理、美术设计,搜索、网购、通讯、远程控制等等,它几乎无处不在,无所不能,一台电脑在,天下任我行。所以,从专用计算机到通用计算机,这是一个历史性的跨越,人类从此进入了计算机时代。

  

   通用计算机的发明,主要归功于两位天才数学家——图灵和冯·诺依曼。图灵被称为“计算机科学之父”, 他做出了通用计算机的数学模型,这就是永垂青史的“图灵机”;冯·诺依曼被称为“现代计算机之父”,在图灵机的基础上,他进一步做出了通用计算机的工程构架,这就是大名鼎鼎的“冯?诺依曼体系”。直到今天,所有计算机都还严格遵循着图灵和冯·诺依曼的理论设计。

  

   通用计算机比专用计算机究竟好在哪呢?我们说一个经典的故事。世界上第一台电子计算机是由莫希利、埃克特在1946年设计的ENIAC(译成中文是“电子数字积分和计算机”),由于它缺乏通用性、可变性与存储程序的机制,因此耗电多、费用高就成为其不可承受之重,而程序与计算分离是其致命的缺陷。据说,当年只要ENIAC一开动,整个费城的灯光都会黯然失色。后来,冯·诺依曼受军方委托,对ENIAC方案进行改进,他根据图灵机的构思,提出了一种新的计算机设计方案EDVAC(译成中文是“离散变量自动电子计算机”),完美地解决了ENIAC的所有难题。这就是著名的“诺依曼机”,也是世界上第一台通用电子计算机。

  

   诺依曼机最大的特点就是“程序内存”,也就是说,它的程序被处理成数据装进了计算机内部,所以计算机就能自动依次执行这些指令,不需要从外部接线来执行指令了。譬如像ENIAC,其程序和计算是分离的,每次更换新的指令时,需要把数百条线路重新接到机器上去,一群接线员要手忙脚乱地忙活几天,才能进行几分钟的运算,这样一来,效率就太低了,能耗非常高。根据诺依曼机的设计方案,只要程序能够内存,它就可以做成芯片装进计算机里了,软件工业由此而兴,这是现代计算机的核心。目前,从就业人数上看,全球硬件工程师人数只有100万左右,但软件工程师人数却过亿,差距非常大。

  

   从专用计算机到通用计算机,不仅是科学的一次飞跃,也是科技的一次革命。如果说蒸汽机是18世纪的通用技术,电力是19世纪的通用技术,那么计算机就是20世纪的通用技术,它不仅改变了人类的社会组织行为,也改变了人类的日常生活方式。

  

03 机器学习的艰难崛起


   那么,计算机又是怎么跟人工智能挂上钩的?如果一台通用计算机的功能非常强大,可以用它来模拟人类的所有行为,这个研究方向就是人工智能。按照“人工智能之父”约翰·麦卡锡的解释就是:“(我们的目标)是远离对人类行为的研究,将计算机作为解决某种难题的工具。这样一来,人工智能就会成为计算机而非心理学的分支学科。”

  

   计算机和人工智能的思想先驱都是图灵,他最早提出了用计算机来模拟人类思维的设想。1936年,24岁的图灵就写出了他的成名作《论可计算数及其在可判定性问题上的应用》,给出了“机械计算”的严格定义,这就是“图灵机”的概念。1950年,图灵发表了AI史上的经典论文《计算机器与智能》,开篇就提出“机器能够思维吗?”这一直指本质的问题,文中他特意说明,机器就是指“数字计算机”,并设计了一个模仿游戏来验证机器是否具有思维能力,这就是著名的“图灵测试”。机器能否具备真正的思维能力,这就是图灵给我们留下的思想谜题。

  

   整个人类科学史,差不多就是一部天才们的独创思想史,在浩瀚的宇宙中,其思想光芒犹如璀璨星辰,指引着人类探索的方向。图灵的天才思想激发了后来数学家们对设计“智能机器”的强烈愿望,这就是人工智能的源起,就像麦卡锡定义的那样:“人工智能是研制智能机器的一门科学与技术”。

  

   二战后,在学术界和工业界的共同推动下,AI技术迅速崛起,形成了第一波AI热。1956年,由麦卡锡和马文·明斯基两人发起,举办了意义深远的达特茅斯会议,与会者全是当时计算机科学、认知科学和信息科学的顶尖高手,信息论创始人香农也参加了,IBM赞助了本次会议。麦卡锡在会上首次提出了“人工智能”这一术语,标志着这一门学科的正式诞生。

  

   刚开始,大家对AI技术抱有很大的期望和信心,认为很快就能设计出智能机器。1967年,在接受记者采访时,明斯基还信誓旦旦地表示:“再过3∽8年的时间,我们将创造一台能够达到普通人类总体智力水平的机器。我指的是一台能够阅读莎士比亚著作,给车上润滑油,会耍手腕,能讲笑话,而且还会跟人打上一架的机器。那时,机器能以令人惊奇的速度自学。几个月后以后,它将达到天才水平,而再过上几个月,它的能力将不可估量。”当时这番话几乎是天方夜谭,即使现在也还是遥不可及的目标。

  

   AI领域最先取得重大进展的是机器证明(ATP)。1959年,美籍华裔数学家王浩用计算机证明了罗素《数学原理》中的350条定理,只用了9分钟,但罗素和怀特海合写这部书却花了整整10年的时间。在棋类游戏上,机器也表现出了很高的“智能”,1997年,IBM超级电脑“深蓝”战胜国际象棋世界冠军卡斯帕罗夫,这也是AI史上的一个标志性事件。但除了专家系统,早期AI技术做得都不成功,尤其是在机器翻译、图像识别、语音识别等这些具有商业价值的项目上,当时AI技术根本无法处理,这就导致从20世纪70年代到2005年这长达30多年的“AI寒冬”。

  

   为什么会这样?就是大家的研究方向出了偏差。当时AI的研究方法,主要有“符号主义”和“联结主义”这两种观点。符号主义主张,如果我们把计算机的编程做得非常全面、强大,那么用纯粹逻辑程序的方法,机器就能模拟人类的全部行为,参加达特茅斯会议的科学家几乎都是符号主义的拥趸者。联结主义走的却是另外一条技术路线,它主张模拟人类的神经网络,通过机器学习的方法来实现AI的全部目标。

  

   有意思的是,在漫长的“AI寒冬”里,符号主义曾是绝对的主流,但后来却逐渐销声匿迹了,而联结主义是少数派,只有它熬过了严寒,最终迎来了灿烂盛放的春天。

  

   为什么会这样?现在回过头再去看这段历史,就比较清楚了:符号主义是希望把人类行为的所有问题都设计好,编程好,这是一种确定性的机器认识过程,由一台功能强大的通用计算机就能实现;而联结主义并不是事先就把所有问题都设计好,编程好,而是通过模仿神经元联结方式,去模拟人类学习过程,这就是一种不确定性的机器认识过程,但它也暗示了,神经网络可能根本就不是图灵机。简单讲,就是学习机可以自动编程,而计算机只能人工编程,两者是不同的概念。

  

   符号主义和联结主义的根本分歧点在于:我们根本不可能事先就把所有问题都设计好,编程好,“万能算法”是不存在的,电脑只能像人脑那样,通过模拟复杂的神经网络联结方式,激发出某种“超计算”的自组织行为,它才可能具备真正的思维能力。


(点击此处阅读下一页)

本文责编:limei
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/118693.html
文章来源:作者授权爱思想发布,转载请注明出处(http://www.aisixiang.com)。
收藏