返回上一页 文章阅读 登录

王莹:算法侵害类型化研究与法律应对

更新时间:2022-09-06 23:52:30
作者: 王莹  

   内容提要:算法的普遍应用给个人及社会带来如下类型的侵害:算法标签、算法归化、算法操纵、算法歧视与算法错误。传统部门法分析框架无法对算法侵害进行完全的、有效的规制。GDPR和我国最新通过的《个人信息保护法》提供了源头数据规制与数据赋权制衡的应对方略,不仅规定了数据处理原则、个人数据权利,还专门引入自动决策概念,设置专条进行规制,形成了从部门法到数据法的算法初步规制框架。但我国《个人信息保护法》的个人数据保护和个人赋权制衡的进路过于狭隘,难以对系统性的、多维的算法侵害及算法自动决策进行全面、系统的规制,故有必要对《个人信息保护法》第24条自动决策条款进行扩展,引入人工干预权,进一步丰富数据权利束,并超越个人数据权利思维,从算法侵害风险防御视角出发,进行整体性的、纵向的、动态的算法规制,积极探索算法可解释性、可问责性的解决方案,加强算法责任研究,沟通算法事前规制与事后规制,并形成二者的闭环,以应对算法社会普遍存在的算法侵害风险。

   关 键 词:算法侵害  数据与个人信息保护  算法可解释性  算法可问责性  算法影响力评估

  

   在人工智能时代,算法利用人类活动日益数字化所积累的海量数据,不断扩展其应用场景的广度与深度,企业和公共机构广泛应用算法决策来决定是否向个人提供商品、服务、工作岗位或公共产品,司法机关在算法决策的辅助下进行司法裁量。对算法技术风险的担忧与对算法可信赖性、可解释性、可问责性的探讨逐渐成为全球性的重要公共议题。我国法学界近年来围绕大数据杀熟、算法歧视、算法黑箱、算法共谋等算法决策法律问题展开探讨,《电子商务法》《消费者权益保护法》等也相继从立法层面作出回应。2021年8月20日通过的《个人信息保护法》(下文简称《个保法》)不仅规定了数据处理原则、个人数据权利,还专门引入自动决策概念(第69条),设置专条进行规制(第24条),形成了从部门法到数据法的算法初步规制框架。本文尝试结合人工智能算法技术特征与既有法律框架资源对算法风险或侵害进行类型化界定,探讨将算法侵害纳入现有的部门法框架进而运用既有法律资源进行应对的可能性,分析欧盟《一般数据保护条例》(General Data Protection Regulation)(下文简称GDPR)与我国《个保法》对算法侵害的数据法规制路径,并在此基础上提出应对算法侵害的算法规制扩展思路。

  

   一、算法侵害的类型性分析

  

   由数据驱动和算法自动决策的(消费或知识)信息推荐或推送、针对个人的商业和刑事风险评估、公共机会配给、智能家电服务在给人们带来效率、便捷的同时,也隐含着诸多不确定性与问题,在客观、高效、便捷的表象之后,隐藏着人的脆弱性与被操纵性。耶鲁大学的Balkin教授首次从法学角度审视了算法社会造成的深刻影响,对算法所形塑的法律关系及所带来的侵害进行了系统论述。具体而言,人类已从网络时代进入算法社会,所谓算法社会,即围绕通过算法、机器人和人工智能代理进行社会与经济方面的自动决策与决策执行而组织建构的社会。①从个别公司或决策者的角度来看,算法的普及确实提高了效率,但实际上,算法的普及给个人和群体带来了累积性损害。这些损害是自动决策的副作用,是算法活动的社会成本。②Balkin类比侵权法上的公共妨害概念,将算法的普遍应用给公众增加的社会成本称为算法妨害(algorithmic nuisance)。所谓算法妨害,是指算法的大数据分类、风险评估技术的大规模使用给个人的身份、声誉及行为带来的消极影响。③具体而言,算法妨害的副作用包括以下侵害(Harm):④

  

   一是声誉侵害。算法结合个人历史数据对个人进行风险评估与分类,根据算法应用的不同场景,把个人划归进不同的风险群体,例如,具有财务风险、雇佣风险、犯罪风险、浪费社会福利风险、不良消费者风险等的群体。被标识于个人的风险在数字时代就成为个人的污点,给个人造成声誉损害。

  

   二是歧视。基于风险评估与归类,算法会对具有风险的个体进行差别化对待,例如不提供利益(如职位或信贷),或增加成本(如增加监控、提高消费价格等)。

  

   三是归化(regimentation or normalization)。算法风险评估与归类增加了人们对自己的身份信息被搜集、处理的担忧,促使人们改变、规范自己的行为,例如,人们会减少在数字世界的行为轨迹,以避免被监控或划归进风险群体。虽然人们减少自身的数字暴露能够降低算法社会的总成本,但这可能导致社会的编制化(regimentation)、统一化,限制个体行动自由,遏制个性表达,致使那些减少数字暴露的人们被社会孤立。这些限制或影响并非都是不可接受的,但至少需要对这些限制或负面影响予以正当化说明。

  

   四是操纵(manipulation)。算法运营者可能利用算法发现哪些群体易于受到算法操控,进而引导人们作出有利于算法运营者的选择,但不给予人们相应的回报。政府可能在行政程序中推广算法决策以限缩公民权利,导致公民尊严受损。私人公司可能利用算法影响消费者,损害消费者的意思自治,基于消费者的隐藏偏好开发的产品搜索可能以不利于消费者的方式使用消费者的偏好,构成对数字市场的操纵。⑤

  

   五是缺乏透明性、可问责性、监管及正当程序。鉴于算法技术的复杂性、专业性、隐蔽性,外行人很难理解算法决策的机制。在作出针对个人的决策时,无论是作出关于具体行政行为的决策,还是作出关于司法裁判行为的决策,在法律上都需要设置合理的程序。算法进行自动决策,同样可能涉及对个人或集体的财产、人身权益的减损、增加或再分配,然而缺乏物理世界中决策程序的那种程序性保障。

  

   Balkin以鸟瞰算法社会的视角对算法侵害所作出的观察是深刻且极具启发性的,为我们研究算法法律问题提供了关键的切入点。以上述研究为基础,笔者结合人工智能算法决策的技术特征对算法侵害进行整合与分类,将人工智能算法决策所带来的消极影响或者侵害作如下分类:

  

   一是算法标签侵害。算法利用大数据对个人进行风险评估与分类,将人们归入不同的风险群体,形成身份标签,并将这种身份标签在数字世界留存、流转、再利用,从而将身份标签固化为数字时代的个人身份污点,Balkin将之称为算法的声誉损害。但这些风险标签并不被用于传统的人际交流沟通,不同于线下的社会人际交往中的社会评价,除了算法使用者知悉外,其他社会成员无从知悉,因而不属于侵权法中的名誉权侵权。但是这种风险标签一旦被贴到个人身上,就会在数字世界流转,被其它算法处理和分析,对个人造成永久不利影响。即便算法标签是由设计合理的算法规则经正确分析得出的数据所作出的决策结论,在算法时代也呈现放大效应,甚至可能导致对个人的权利与机会的永久性剥夺。为了区别于传统法律中的名誉权侵害,也为了还原侵害产生的技术过程,我们将这种侵害称为算法标签侵害,即算法利用历史数据及算法模型对个人进行风险评估与归类,并将个人标签化为“具有某种风险”。

  

   二是算法归化侵害。算法风险评估与归类促使人们改变、规范自己在数字世界与算法社会的行为模式,降低暴露于算法搜集、分析环境的机会,或者使自己在算法面前“看起来”正常。无论是社会的编制化、统一化,还是社会孤立,都必须有合理的理由才能被正当化。例如,实施大规模算法监控与恐怖分子识别,必须以实现社会风险防御目的为必要,否则,就构成对个人行动自由的过度干预。

  

   三是算法操纵侵害。算法利用其所搜集或者汇聚到的用户数据形成巨大的信息优势,向用户推送信息,影响用户的选择与决策,实现对个人和群体的操纵。例如,算法可能试图影响用户的政治观点或者商业选择,侵害个人或者群体的信息自我决定权,最终造成社群沟通鸿沟。

  

   四是算法歧视侵害。鉴于数据与算法设计都无法做到客观中立,所以它们反映了收集者或设计者的某种主观性或偏见,决策结论可能也带有偏见,并由此导致对决策对象或他人的损害。

  

   五是算法错误侵害。除以上几种算法侵害之外,Balkin还附带提及了物理损害,即自动驾驶或工厂机器人算法决策所导致的对人员身体上的伤害。⑥这种算法侵害主要是由数据收集、数据准备、算法规制设计、算法模型验证过程中的缺陷或错误所导致的,例如,因训练数据不充分、不具有代表性,算法种类选择不当,算法设计编码错误等,导致算法决策结论错误。算法错误在自动驾驶或生产线等物联网环境下结合执行模块,既可能直接导致物理侵害,也可能如其他算法侵害一样,单纯导致不当剥夺机会、增加成本等侵害。

  

   上述对算法侵害的分类与表述在一定程度上糅合了算法的技术风险特征、侵害产生的机制(如算法标签、算法错误)、对个人或集体产生的影响(如算法归化、算法操纵、算法歧视),有别于传统法律偏向于关注具体权利侵害结果,开启了更多维的、系统的对算法负面影响的理解,该理解有助于我们从技术正当程序角度提出系统性的算法侵害应对与算法规制方案。

  

   二、应对算法侵害的传统法律框架:场景式部门法规制路径

  

   算法标签、算法归化、算法操纵等新型的算法社会的侵害相比于传统物理社会中的侵害而言是新型的侵害,在现行法律制度内,并非能够穷尽既有法律资源以找到法律应对措施。因此,有必要将上述算法侵害概念纳入现行法律规制框架,以审查在现有法律框架内是否存在规制漏洞以及现有法律资源是否能够提供妥当的解决方案,并据此探讨是否需要以及如何对现有法律规制框架进行调整及扩展。

  

   算法借助强大的数据搜集能力、数据挖掘能力、风险评估能力与精准预测能力,不断扩展应用场景,针对这些应用场景中算法所侵害的利益的种类与涉及的社会关系类型,传统法律提供了不同的部门法解决方案。

  

   (一)算法操纵

  

   算法操纵侵害主要体现于“算法共谋”“信息茧房”及精准营销等方面,平台利用数据优势影响用户的自由选择,干预其观念、意志的形成,对个人或群体进行支配或操纵。算法共谋是指,同一市场中两个或两个以上的经营者,利用算法所实施的协调价格、限制产量等排除、限制市场竞争的行为,实际上属于对数字市场的算法操纵。虽然算法共谋具有违反反垄断法之嫌,但鉴于算法的技术性、智能化、隐蔽性,欲在传统的反垄断法框架内证明共谋意思联络及搜集价格共谋证据,尚存在较大技术障碍,易陷入规制困境。⑦鉴于此,2021年2月7日发布的《国务院反垄断委员会关于平台经济领域的反垄断指南》(下文简称《反垄断指南》)在垄断协议认定中引入了对平台基于大数据和算法所实施的协同行为的审查。

  

所谓“信息茧房”,是指算法获取并精准理解用户浏览过的信息内容及浏览轨迹,建立用户标签,(点击此处阅读下一页)


爱思想关键词小程序
本文责编:陈冬冬
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/136376.html
文章来源:《法制与社会发展》2021年第6期
收藏