返回上一页 文章阅读 登录

刘东亮:新一代法律智能系统的逻辑推理和论证说理

更新时间:2022-05-28 00:17:53
作者: 刘东亮  

   内容提要:法律智能系统运作逻辑的合理性,是取得当事人和公众信任的基础,也是其决定具有正当性和可接受性的重要根据。传统的基于规则的专家系统,其逻辑根基是演绎推理。基于案例的推理的专家系统,底层逻辑是类比推理。使用大数据技术的智能系统,属于“基于计算模型的推理”。在处理广泛存在的模糊性问题时,智能系统会运用到模糊推理和模糊逻辑。由于新一代智能系统多采用混合技术路径,上述推理方式可以并存。鉴于价值选择和价值判断是现阶段计算机能力的短板,智能系统尚无法像人类一样展开情理法兼容的论证,解决出路是将论证的复杂要求“降维”成解释,即非正式的说明理由。可以合理预见,法律智能系统的发展方向是“人机协同”。

  

   关键词:法律智能系统 逻辑推理 论证说理 人机协同

  

   目  次

  

   一、导言:为什么研究智能机器的逻辑

  

   二、研究机器逻辑的前提问题:法律逻辑之检视

   三、法律智能系统的基本推理方法

   四、法律智能系统的说理:以“解释”替代“论证”

   五、结语:法律智能系统的未来

  

   一、导言:为什么研究智能机器的逻辑

  

   人工智能(AI)技术正在向法律领域全面渗透。尽管在司法领域,尚未有真正的“阿尔法法官”(Judge Alpha)出现,智能系统的作用还主要是辅助办案,但在行政领域,各种形式的“自动化决策系统”(automated decision systems)早已得到广泛运用。

   法律智能系统的落地应用,在带来便捷和高效的同时,也不可避免地引发了某些疑虑。因为,对于大多数人来说并不清楚这些复杂的机器究竟是如何作出决定的。诸如“人工智能的算法本质上是黑箱”等似是而非的说法,更是无形中加重了人们的心理负担。不难设想,如果我们完全不知道这些机器是如何作出决定的,无论其外在表现看起来多么“智能”,我们都无从确定能否信任机器,也无法接受其决定。而可接受性是一切法律决定的生命。法律决定可接受性的基础,除了程序正当性之外,还端赖其逻辑合理性。尤其是,在法律智能系统瞬间即可作出决定,程序的时间和空间要素都被大幅度压缩的情况下,逻辑合理性就成为首当其冲的重要问题。正因为如此,有些国家或地区的法律,如欧盟《通用数据保护条例》(GDPR)第13条要求,自动化决策的主体必须为当事人提供决策的相关逻辑和实质性信息。

   从技术角度来说,逻辑的重要性亦复如是。计算机之父冯·诺伊曼曾指出:“任何为人类所使用,特别是为控制复杂过程而建造起来的人造自动化系统,一般都具有纯粹逻辑的部分和计算部分。”在人工智能的研究中,逻辑作为描述和模拟人类思维的工具,成为重现智能的手段。具体到法律智能系统,其核心问题即法律推理的逻辑表示问题。那么,照此而言,法律智能系统作出决定时遵循什么样的逻辑?此种逻辑和普通形式逻辑(经典逻辑)相比,特别是和法律逻辑相比,究竟有无不同?这是要我们相信并接受法律智能系统的决定之前必须厘清的问题。

  

   二、研究机器逻辑的前提问题:法律逻辑之检视

  

   比较应有明确的参照。在我们分析智能系统的逻辑之前,首先要弄清楚什么是法律逻辑。不难理解,AI终究是一种服务于法律实践的技术手段,如果对法律实践本身的规律缺乏了解,特别是对法律逻辑的本质特征没有充分认识,人工智能的加入不仅无助于实现法律公正,反而有可能治丝益棼、添堵又添乱。正是在这个意义上,有技术专家指出,法律逻辑的研究水平决定了法律智能系统的研发水平。

   研究表明,法律逻辑是受实践理性支配的实践逻辑(practical logic),其分析和评价的对象是法律实践中的推理与论证。这种鲜明的实践性本质生发出法律逻辑的各项特征,并使其与体现人类纯粹理性、适用于数学和自然科学等先验领域的普通形式逻辑区别开来。关于法律逻辑和形式逻辑以及三段论三者的关系,可用图1表示:

   图片

  

  

   概言之,法律逻辑、法律推理和论证具有以下几项特征:

   1. 法律逻辑包容价值判断。日本法学家川岛武宜指出:“在法律学中展开逻辑论证的三段论,关键的问题几乎都集中在如何决定大前提上。此处所谓的大前提与数学中的公理不同,它可以被法学界改变……”事实上,不仅法律规范存在价值判断,在确定小前提时,对事实的描述和认定也常常蕴含有价值判断(比如“他偷走了那笔钱”,这一事实描述包含着“他不应当拿走那笔钱”的道德批判)。比利时法学家佩雷尔曼(Chaim Perelman)说得更为干脆,“法律逻辑根本离不开价值判断”。也就是说,法律逻辑并非像我们通常所设想的“将形式逻辑应用于法律”。如果问题关系到法律的内容而非形式推理,形式逻辑就无能为力;形式逻辑也不能帮助消除法律中的矛盾和填补法律中的空隙。由于法律推理的大小前提和结论通常都含有价值判断,因而,法律逻辑属于“道义逻辑”(deontic logic),其评判的对象是伦理行为和规范命题(义务、许可、禁止等),与道德哲学存在密切关系。

   2. 法律逻辑允许推理结论的非唯一性。由于法律推理的前提通常都蕴含有价值判断,而价值判断具有多元性,各种不同意见可以同时是合理的。易言之,在一个多元的世界中,价值判断的准则是“合理的”“可接受的”等原则,因而,法律问题往往没有唯一“正确”的答案。按照佩雷尔曼的说法,法律推理主要是实现不同价值判断之间的“综合与平衡”,即由法官通过对自身决定的论证,给出正当性理由,以说服作为直接受众的当事人和不在场参与的社会公众(实际的最终裁判主体)。因此,法律推理可以归结为著名数学家波利亚(GeorgePolya)所说的“合情推理”(plausible reasoning),它与适用于数学和自然科学领域受形式逻辑支配的严密的“论证推理”相对应,并相互补充。

   3.法律逻辑承认推理结论的“可废止性”。从概念上看,法律推理过程所使用的前提的“真”(true),虽然表面上与形式逻辑使用相同的术语,其真实含义却是“证成”(justified)。当新的信息补充进来后,原来的证成可能会失去效力。因此,由于法律规范的开放性和法律事实的建构性,法律推理的结论是可废止、可逆转的。这就意味着,法律逻辑是一种非单调逻辑,与形式逻辑中演绎推理的单调性有明显不同。

   4.法律逻辑评判法律推理与论证的强度和可信度。法律论证所追求的目标,并非普通逻辑学意义上论证形式的有效性(valid argument)和论证结果的可靠性(soundness),而是追求“强论证”(strong argument)与“可信度”(cogency)。因为在法律推理过程中,在大多数情况下,前提和结论之间无法做到100%确定的必然联系(很多时候也无必要)。这意味着,法律推理属于非必然性推理,法律论证也只是一种“强论证”。如果按照形式逻辑的标准,“强论证”实际上属于“无效论证”。但是在法律实践中,我们把前提可为结论提供支持的程度达到某种法定标准的强论证称为“有效论证”,意指我们整体上认可这一论证。同样,在论证结果的真实性上,法律逻辑要求的并不是“可靠性”而是其“可信度”。在人类认知能力有限且受到法律程序制约(如时限要求)的情况下,具有一定可信度的论证结果,虽然无法绝对排除出错的可能,但却是可接受的。

   法律逻辑的上述诸项特征(不完全归纳),皆源于法律的实践性本质,是法律的实践性在不同侧面的体现和反映,它们共同构成法律智能系统的设计约束(design constraints)。这些约束条件不仅框定了法律智能系统的能力范围,亦成为分析其底层逻辑的参照标准,可以据之评判智能机器的决定是否具有可接受性。

  

   三、法律智能系统的基本推理方法

  

   新一代法律智能系统往往集成了包括专家系统、数据挖掘和机器学习等在内的多种人工智能技术,也就是说,实践中已广泛采取混合智能方法,因此,我们可按照技术发展的时间脉络,对不同历史时期出现的智能系统及其运用的基本推理方法进行逐个分析,以求在“解剖麻雀”的基础上,更深入地理解新一代法律智能系统的总体运行逻辑。

   (一)传统的专家系统:基于规则的推理

   在研究人工智能时,我们总会遇到一个绕不开的问题:什么是智能,它是如何产生的?从信息科学的角度而言,智能的生成离不开信息。人类认识世界、改造世界的思维过程同时也是一个信息转换的过程。根据信息转换原理,智能的生成路径是“信息→知识→智能”,即先从数据中获取信息(what),从中提炼知识(why),进而激发智能决策(how to do)。人工智能面临的挑战是通过机器模拟人类智能,这需要首先将信息转换成知识,再将知识有效组织、关联起来,然后运用自动化推理作出决策。

   1.专家系统的核心机制:知识表示与推理

   在人工智能的发展史上,古希腊哲学家亚里士多德概括的以演绎推理为主的形式逻辑、英国哲学家培根提出的“知识就是力量”及其对归纳法的研究,都对AI的技术路径产生了重大影响。19世纪数理逻辑的发展和20世纪40年代电子计算机的问世,使得人类很早就有的借助机器执行自动化推理的梦想在一定程度上成为现实。

   1956年夏,由西蒙(Herbert A. Simon)和纽厄尔(Allen Newell)带到达特茅斯会议上,通过选择性搜索解决非数值问题的“逻辑理论家”(Logic Theorist),是首个使用逻辑公理进行推理的计算机程序;二人其后不久开发的针对非特定主题的“通用问题求解器”(GPS),被称为第一个“像人一样思考的程序”,由此开辟了以前只能由人类智能完成的任务可交由机器自动化操作的道路。西蒙等人因使用符号逻辑作为模拟人类智能的方法,因而被称为人工智能的逻辑主义或符号主义学派,并长期一枝独秀,成为人工智能的主流派别。

   逻辑主义学派将逻辑视为人工智能的基础。该学派的突出成就是研发出了适用于各特定领域的专家系统(expert systems)。在大数据时代到来之前,专家系统因其在计算机科学和现实世界的贡献而被视为人工智能领域最成功的应用。专家系统最强大的理论基础来自亚里士多德建立的逻辑前提。亚里士多德、笛卡尔等人的理性主义哲学强调在理解世界时推理的力量,并认为正是人类具有的推理能力将人类与所有其他生物区别开来。任何建立人工智能机器的尝试都离不开这种推理能力。

   当然,单有以逻辑规则为基础的推理是不够的,知识才是智能的核心和基础。如果缺少构成推理之大前提的知识,就不足以解决现实生活中的任何问题。自1970年以后人工智能从对一般思维规律的探讨转向以知识为中心的研究以来,专家系统的研发在多个领域取得了重大突破,各种不同功能、不同类型的专家系统如雨后春笋般建立起来,产生了巨大的经济效益和社会效益。

专家系统的核心机制可概括为“知识表示”与“推理”。反映在构造上,专家系统有两个必不可少的核心组件:知识库和推理机。(点击此处阅读下一页)


爱思想关键词小程序
本文责编:陈冬冬
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/134189.html
文章来源:《中国法学》2022年第3期
收藏