返回上一页 文章阅读 登录

丁仲礼:碳中和对中国的挑战和机遇

更新时间:2022-01-09 21:51:52
作者: 丁仲礼  

  

   中国国家主席习近平于2020年9月22日在第七十五届联合国大会一般性辩论上向世界庄严宣布:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。”其后,习主席又在多个国际场合对此作出承诺,表明中国政府和中国人民言必信、行必果的决心,为国际社会合作应对全球气候变暖提供了十分强大的助力。

   众所周知,化石燃料是工业革命以来人类得以发展进步的重要物质基础。在未来的发展进程中,如何逐步摆脱对化石燃料的依赖,真正向低碳社会转型,将是一项十分严峻的挑战。对中国来讲,更是如此。因为中国是工业化过程的后来者,并没有像一些发达国家那样,进入能源消耗已呈下降趋势的后工业化时期。为此,中国科学院学部组织百余位院士专家,从技术和产业层面对我国如何实现碳中和作了较为系统的研究,获得了对碳中和路线图的框架性认识。本文拟对此作一简介。

   一、中国的二氧化碳排放历史和现状

   人类大量利用化石燃料,向大气排放二氧化碳,是工业革命以后的事,但大气中二氧化碳浓度有实质性增加,则主要是近100年来出现的现象。中国从19世纪后半叶开始发展工业,但由于社会动荡不安,工业化进程十分缓慢,一直到新中国成立以后,才开始系统性工业化。二氧化碳排放开始进入快速增长时期,则要到1978年改革开放尤其是2001年加入世界贸易组织(WTO)以后。

   我们来看国际权威数据库提供的基本信息:从1850年到2019年,全球共排放了16100亿吨二氧化碳,其中中国为2200亿吨,占13.7%,远低于我国人口在全球的占比;而美国同期则排放了4100亿吨,占比高达25%以上;七国集团(G7)国家整体上的排放量为7340亿吨,占比高达45.6%,而其人口在全球占比则不到10%。通过计算,我们可获得1850—2019年人均累计二氧化碳排放量(每年的人均排放之加和):美国2174吨、G7国家1397吨、全球386吨,而中国是182吨——只是美国的8.4%、G7国家的13.0%、全球平均的47.2%。

   由此可见,中国对全球大气二氧化碳浓度增加的贡献并不高。何况中国自加入WTO以来,一直承担着“世界工厂”的角色,相当一部分的排放是用于生产出口产品。因此,中国绝不像一些西方报刊所描绘的那样,是“全球最大的排放国”。即使以国家作为比较单位,美国对大气二氧化碳浓度增高的历史贡献也远大于中国。如果以人均累计排放量作为评价指标,中国则远低于全球平均,而这其实是最为合理的评价指标,因为不同国家的工业化起步时间有早晚,一个国家的工业化程度、城市化程度、人民生活水平、基础设施水平等,都需要消耗化石能源来提升,都需要时间来建设,都同人口数量相关。脱离了人口、历史这两个因子,比较国与国之间的排放是毫无意义的。

   但是,我们不得不承认,目前全世界每年总共排放约400亿吨二氧化碳,中国大约占四分之一,即100亿吨左右,年度人均排放已经超过全球人均水平。中国从加入WTO以来,二氧化碳排放量的快速增长,是同我国的压缩式发展分不开的。要发展就得增加能源消耗,在非碳能源技术尚未成熟的背景下,这就意味着排放增加。

   中国目前的人均国内生产总值(GDP)刚超过1万美元大关。从发达国家走过的历程看,在人均GDP达到1万美元之前,人均能耗的增长非常强劲;从1万美元到4万美元,人均能耗还会缓慢增长;达到4万美元之后,人均能耗将处于逐渐下降阶段,当然这也可能同发达国家将高能耗、高污染产业转移到发展中国家去有关。中国力争在2060年达到碳中和,而从现在到2060年我国正处于人均GDP从1万美元到4万美元的奋斗过程中,人均能源消耗的继续增长是不可避免的。一些发达国家在上世纪80年代即达到人均能耗高峰,并且从碳达峰到碳中和至少要用70年时间。和他们不同,中国要从2030年碳达峰后,用30年时间完成碳中和,挑战无疑是巨大的。

   那么,中国目前每年约100亿吨二氧化碳的排放主要来自何处?了解这一点对如何实现碳中和至关重要,这也是碳中和路线图的逻辑起点。根据国家相关统计,中国目前的一次能源消费总量约为每年50亿吨标准煤(编者注:一次能源是指自然界中以原有形式存在的、未经加工转换的能量资源,又称天然能源),其中煤炭、石油、天然气的占比分别为57.7%、18.9%、8.1%,非碳能源的占比仅为15.3%。100亿吨二氧化碳的排放,发电(供热)占比45%,建筑占比5%,交通占比10%,工业占比39%,农业占比1%。发电(供热)的主要终端消费者为工业(64.6%)和建筑(28%)。从以上数据可以看出,二氧化碳的终端排放源主要为工业(约占68.1%)、建筑(约占17.6%)和交通(约占10.2%)。因此,实现碳中和工作的着力点也应该集中在这些领域。

   二、碳中和的基本逻辑和技术支撑

   碳中和的概念等同于“净零排放”,而不是二氧化碳“零排放”。净零排放的概念就是人类可以排放一定数量的二氧化碳,但这个排放量中的一部分被自然过程吸收而固定,余下部分则通过人为努力而固定(比如通过生态系统建设吸收二氧化碳,或把二氧化碳收集后转为工业品或封存于地下),排放量与固碳量相等,则为碳中和。评价一个国家、一个地区甚至一家企业碳中和与否或碳中和程度,看的就是其排放量和固碳量之比。

   根据国际上过去几十年来的观测统计,人类排放的所有二氧化碳中有54%被自然过程吸收(其中陆地吸收31%,海洋吸收23%),另外的46%留在大气中,成为大气二氧化碳浓度升高的主要贡献者。海洋吸收主要通过无机过程形成碳酸钙沉积和微体生物合成碳酸钙,陆地吸收则主要通过生态系统固存有机碳和土壤/地下水吸收形成无机碳酸盐,以及在河道、河口中沉积埋藏有机碳。尽管陆地吸收总量是已知的,但到目前为止,各种陆地吸收过程的相对比例并不清楚。根据中国科学院“碳收支”专项研究成果,我国通过自然保护和生态工程建设等,2010—2020年间的陆地生态系统净固碳能力为每年10亿—13亿吨二氧化碳。

   根据前面介绍的排放来源和吸收过程的数据,我们可以得出结论:碳中和是一个“三端共同发力”的体系,即“发电端”用风、光、水、核等非碳能源替代煤、油、气,“能源消费端”通过工艺流程再造,用绿电、绿氢、地热等替代煤、油、气,“固碳端”用生态建设、碳捕捉—利用—封存(CCUS)等碳固存技术,将碳人为地固定在地表、产品或地层中。这就是碳中和的基本逻辑。

   一国无论是技术原因,还是市场原因,其“不得不排放”的二氧化碳总量等同于自然吸收量与人为固碳量之和,即可视为“净零排放”,实现了该国的碳中和。由此可见,有先进并廉价的技术可供这“三端”所用,是实现碳中和的前提条件。也就是说,“技术为王”将在碳中和过程中得以充分体现。下面,我们来对这“三端”体系分别作简单介绍。

   (一)“发电端”之要在构建新型电力系统

   我国目前的发电装机容量约为22亿千瓦,未来假定:(1)能源消费端要实现电力替代、氢能替代(氢气也主要产自电力);(2)为实现人均GDP从1万美元增到3万—4万美元,所需的能源明显增长;(3)风、光发电利用小时数难以明显提高,那么估计我国实现碳中和之时,总的电力装机容量会在60亿—80亿千瓦之间。因此,未来新型电力系统的第一个特点是电力装机容量巨大。

   第二个特点是我国十分丰富的风、光资源将逐步转变为主力发电和供能资源,这既包括西部的风、光资源,也包括沿海大陆架风力资源,更包括各地分散式(尤其是农村)的光热等资源(如屋顶和零星空地)。

   第三个特点是“稳定电源”应从目前火电为主逐步转化为以核电、水电和综合互补的清洁能源为主。

   第四个特点是必须利用能量的存储、转化及调节等技术,克服风、光资源波动性大的天然缺陷。

   第五个特点是火电(为减少二氧化碳排放,应逐步用天然气取代煤炭发电)只作为应急电源或一部分调节电源。

   第六个特点是在现有基础上,成倍扩大输电基础设施,平衡区域资源差异;并加强配电基础建设,增强对分布式资源的消纳能力。

   为实现碳中和,我国拟以装机总量60亿—80亿千瓦,风力发电、光伏发电共占比70%,“稳定电源”占比30%为目标,规划新型电力系统。在40年内,大致以每十年为一期,顺次走控碳电力、降碳电力、低碳电力最后到近无碳电力之路,并完成超大规模的输变电基础设施建设。

   要建立这样的新型电力系统,无论是发电,还是储能、转化、消纳、输出等,技术上都有大量需要攻克的关键环节,这将成为实现碳中和目标工作的重中之重。

   (二)“能源消费端”之要在电力替代、氢能替代以及工艺重构

   用非碳能源发电、制氢,再用电力、氢能替代煤、油、气用于工业、交通、建筑等领域,从而实现消费端的低碳化甚至非碳化,这是实现碳中和的核心内容。在电力供应充足和廉价的前提下,消费端的低碳化主要通过各种生产工艺流程的再造来完成。

   消费端的排放大户是工业、交通、建筑三个领域,工业领域的排放大户是钢铁、建材、化工、有色四个产业。

   从现有技术分析,交通的低碳化甚至非碳化较易实现,即轨道交通和私家车可用电力替代,船舶、卡车、航空可部分用氢能替代。这里关键处是建设私家车的充电体系,建设从制氢到输运再到加氢站的完整体系,当然还有如何保证经济、安全运行等问题。

   建筑领域的低碳化技术亦基本具备,大致可考虑以下途径:城市以全面电气化为主,加上条件具备的小区以电动热泵(地源热泵、空气源或者长程余热)为补充,少部分情况特殊者可部分利用天然气;农村则以屋顶光伏+电动热泵+天然气+生物沼气+输入电力的适当组合为主。

   以上两大领域去碳化的关键是政府与市场做好协调,并以合适节奏推广之。

   目前,工业领域的钢铁、建材、化工、有色产业还没有用电力、氢能替代化石能源的成熟技术,虽然从理论上讲是可以实现的,但仍需技术层面变革性的突破和行业间的协调。事实上,国内外一些企业与研发单位在氢能+电力+煤炭的“混合型”炼铁(如氢冶金)上已有较为成功的先例。从工艺流程再造看,不同工业过程既可考虑先走低碳化的“混合型”再到无碳化的“清洁型”,也可考虑一步取代到位。

   由此可见,能源消费端的“替代路线”亦需研发大量新技术并布局大量新产业。

   需要说明的是,水泥一般用石灰石做原料,煅烧过程中不可能不产生二氧化碳,这部分如得不到捕集利用,当在“不得不排放”的二氧化碳之列。此外,煤、油、气作为资源来生产基础化学品、高端材料、航油等,其开采—加工—产品使用的全生命周期中也存在“不得不排放”的二氧化碳。

   从以上两部分的分析看,无论是发电端还是能源消费端,到2060年都会有相当数量的碳排放存在,需要其他技术予以中和。

   (三)“固碳端”之要在生态建设

学术界对固碳方式已有过很多研究,主要分六大类。第一类是通过对退化生态系统的修复、保育等措施,增强光合作用并将更多碳以有机物的形式固定在植物(尤其是森林)和土壤之中。这是最重要的固碳过程。2010—2020年间,我国陆地生态系统的净固碳能力约为每年10亿—13亿吨二氧化碳。第二类是从烟道中收集二氧化碳,(点击此处阅读下一页)


爱思想关键词小程序
本文责编:admin
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/130801.html
收藏