返回上一页 文章阅读 登录

吴进进 符阳:算法决策:人工智能驱动的公共决策及其风险

更新时间:2021-09-18 09:05:27
作者: 吴进进   符阳  
决定是否将该事件纳入政策议程。在这种意义上,人工智能算法可以有效地实现议程设定的外部动员,使得某些政策问题可以快捷地进入政策议程。另一方面,决策者面临的问题信息高度庞杂,而决策者在注意力、认知能力和信息处理能力方面存在局限性(Workman, Jones & Jochim, 2009),某些社会问题的利益相关者倾向于利用人工智能技术搜集和处理有利于自身利益的数据,特别是社交媒体数据,随后对这些数据进行结构化处理,将结构化数据传递给政府决策者。因此,人工智能的大数据处理能力助力议程设定的内部动员,有助于某些利益团体所偏好的政策问题引起决策者的注意力,从而推动这些问题进入决策议程。

   其次,决定决策者是否把某项问题纳入政策议程的一个重要考虑是问题自身的性质,对于那些过度复杂、成因未明,或者现阶段缺乏解决方法的问题,决策者很难将其纳入决策议程(Anderson, 2003)。人工智能的预测分析能力,可以帮助决策者预测问题的发生概率、复杂性或严重程度,或者分析问题的成因、后果以及解决思路,从而辅助决策者判断哪些问题可以成为政策问题。在议程设置阶段,人工智能的预测分析能力得到较为普遍的应用。在经济领域,政府利用人工智能技术进行未来年度的经济预测,为中长期经济政策的制定提供基础。在公共卫生领域,“谷歌流感趋势”通过分析以“流感检测”为关键词的几十亿次搜索记录来预测流感发病率,在初期预测的准确率很高,辅助疾控部门决定是否启动流感紧急应对程序(Butler, 2013)。在公共安全领域,政府部门通过对社交媒体的大数据分析和处理,判断抗议、骚乱等危机爆发与蔓延的趋势,从而提前采取维护秩序和防止冲突升级的政策措施(Leetaru,2011)。

   (二)人工智能与政策制定

   政策备选方案的提出和选择是公共决策的关键步骤,特别是政策方案的抉择也被称为最典型的决策过程。根据理性主义政策分析模式,政策制定过程需要首先明确政策目的,继而理性地分析备选方案,同时政府部门通过使用各类知识、技术和工具完善方案设计,然后陈述各个政策方案,按照标准对方案效果进行评估和预测,最后对方案进行选择(韦默、瓦伊宁,2013)。在现代社会中,政策方案是否被接受取决于多种因素,其中两个基本因素尤为受到关注:一是方案的合法性和政治支持,被公众特别是目标群体广泛接受的政策方案无疑具有更高的合法性;二是政策方案的技术可行性和实施效果的可预期性。

   在方案设计和制定环节,政策制定者需要借助各种倡议活动,利用专家知识、技术工具,特别是信息收集和处理技术使得方案具备合法性和满足绩效条件。整个政策方案的设计和选择过程都是建立在信息处理的基础上,人工智能算法凭借其信息处理和预测分析能力,在政策方案设计和制定环节中发挥着显著的作用。首先,人工智能可以推动对备选方案进行充分的公众选择和讨论,从而有助于优化备选方案的质量,并且使方案获得广泛的公众支持,为政策执行创造良好的环境。人工智能的自然语言处理等技术可以对互联网,特别是新兴社交媒体上公众关于政策方案的建议、评论、留言等非结构化数据进行深入的文本挖掘和情感分析,从而确定这些数据的特征趋势,识别其中的不同政策偏好(Kamateri, 2015:71-77)。其次,人工智能模型的强大预测能力可以精准预测各个政策方案的实施效果,为方案的选择提供依据。在政策方案选择的传统成本收益分析框架中,人工智能算法可以预测政策的成本和收益,从而指导政策方案的选择。在医疗政策领域,人工智能算法被用于预测个体潜在的疾病风险及医疗成本,并基于预测结果指导医疗政策重点干预那些具有较高患病风险的对象,以及治疗成本更高的病人。这不仅可以使得有限的医疗、护理资源得到合理配置,而且能够控制医疗费用的增长。在预测政策成本前,决策者还需要识别政策目标群体,例如要预测某项税收优惠政策的成本,那么必须先预测这项政策所涉及的目标群体数量,从而计算税收优惠可能导致的减税总额。在美国十分流行的人工智能算法辅助司法决策中,对于犯罪嫌疑人的处理有不同的政策方案:关押等待审讯、取保候审以及直接入狱。使用人工智能算法,根据既有的犯罪数据,基于犯罪嫌疑人特质、案件信息等相关特征,预测他们再次犯罪的概率,从而决定他们是入狱还是被取保候审(Kleinberg et al., 2017)。

   (三)人工智能与政策执行

   无论是强调明确政策目标和决策者控制能力的自上而下的模式,还是强调决策执行部门自由裁量权以及上级决策者与政策执行部门上下协调互动的自下而上的模式,政策执行最核心的症结就是信息不对称问题。执行者比政策制定者,政策目标群体比执行者具有信息优势,他们很容易消极执行政策或者规避政策,决策者及时而充分地获取政策执行信息,就能有效地对执行过程进行监督或协调。人工智能算法能够为执行过程提供实时而充足的执行信息,缓解因信息偏差和不对称而导致的执行偏差和梗阻问题。在政策执行环节,人工智能基于其预测分析和大数据处理能力对目标主体与执行方案进行精准选择(Höchtl, Parycek & Schöllhammer, 2016)。

   第一,人工智能的大数据处理能力使得决策者获取和处理政策执行信息的能力有了巨大的提升。人工智能可以实时获取海量的政策执行数据,并对非结构化数据进行结构化处理,从而把结构化数据迅速传输给决策者和政策执行部门。在交通和社会治安领域,基于人工智能的摄像与人脸识别系统可以实时传输人车流量和道路交通拥堵状况、街道人群密集程度和可疑人物等信息。在新冠疫情防控战役中,口罩佩戴识别、自动测温、防疫健康信息码等基于人工智能算法的疫情防控系统被广泛使用,使得疫情防控部门可以第一时间获取中高风险对象的特征、行程及其密切接触对象等信息。

   第二,人工智能的预测分析能力可以辅助决策者识别政策执行的目标主体、重点对象和执行方案,提高执行的自动化程度。在政策执行过程中,哪些目标群体是政策执行的主要目标,执行过程中哪些环节或领域可能出现问题,针对不同的问题,哪些执行工具和方案更为有效,这些问题都是决定政策执行成败的关键。人工智能基于对执行中信息的分析,能够精准地预测哪些执行问题会出现,出现的概率是多少,或者根据个体的社会经济特征和行为模式精准识别政策的目标群体及其行为,从而可以显著提高执行的精准性和成功率。在交通领域,人工智能系统可以根据街头实时反馈的路况数据,预测道路拥堵程度,从而自动变换红绿灯,减轻交通拥堵程度,减少行人车辆等待时间。

   (四)人工智能与政策评估

   政策评估是政策执行中的动态信息或执行完成后对绩效与结果的评价和反馈活动。在公共决策环节中,对政策绩效进行评估一直是一个难题,主要的障碍是政策绩效信息难以测量或难以搜集和处理,而且缺少科学准确的评估方法。此外,政策评估也是一个政治行为,某些部门为了避免被追究责任,保持组织稳定而刻意使政策目标模糊而难以测量,使得政策评估流于形式(Hood, 2002)。在大数据时代,人工智能算法可以有效缓解由于信息短缺、监控无力以及部门利益等因素导致的政策评估难题。人工智能可以广泛用于对于政策执行实时数据的反馈和政策执行效果的监控与预测,在解决绩效信息获取和测量难题方面上具有独特的优势。一方面,人工智能的大数据处理能力将帮助决策者第一时间获取政策执行的实时数据,实现持续的政策评估。人工智能对执行系统的反馈数据、外部的新闻报道、社交媒体等数据的挖掘,可以帮助决策者迅速发现政策执行走样现象,监测到官员的违规行为或执行目标的违背政策行为,极大地促进了对政策实施效果进行实时评估。另一方面,决策者利用人工智能算法对政策实施效果进行精准预测,政策实施后把人工智能的预测结果和实际结果进行比较,评估政策预测结果的实现程度。在教育领域,美国华盛顿哥伦比亚特区利用教师绩效评估系统(IMPACT),基于教师教学技巧、行为管理和学生成绩的9个绩效指标,利用人工智能算法预测和评估教师工作绩效并进行打分(Cameron, 2017)。

   尽管对政策过程四个阶段的划分和论述有助于启发我们理解政策过程的基本面貌和要素,但是实际的政策过程中各个环节都呈现交叉融合、高度互动和循环往复的特征(Sabatier, 1999)。首先,政策执行与政策评估相互融合交织,执行过程中决策者时刻关注政策效果,对政策实施情况进行实时监督与评估。其次,政策执行、政策评估与政策制定环节也密不可分,决策者通过对政策执行的监控和对政策效果的评估,不间断地调整和改变政策目标和政策方案,对政策方案进行再制定。最后,政策方案制定环节与政策议程设置环节也是循环往复、来回互动的,政策方案的设计、政策工具的选择在很大程度上取决于政策问题的界定和利益相关方对议程设置的影响,当问题界定发生变化时,政策方案也会被重新设计。由于现实政策过程具有非线性的来回往复、互动互构属性,算法驱动的公共决策过程也呈现上述特征。一些政府部门利用人工智能技术对包括社交媒体在内的互联网使用者发帖和评论大数据的搜集和处理,可以第一时间评判政策执行过程中公众的意见和反馈的问题,为决策者调整政策或执行方式提供支持,这一过程就包含了政策执行、评估和政策再制定等内容。我国部分省份扶贫与农业资金管理的“互联网 + 监察”平台通过对资金直接发放的数据进行脱敏和分类处理后,在数据平台上统一公布,最大限度地对社会公开,公众可以直接在平台上查询自己和他人的补贴信息,对于不恰当或违法的资金使用情况进行投诉和举报(邬彬、肖汉宇,2020),这个人工智能算法平台同时实现了政策执行监控和政策效果评估的目的。

  

   三、人工智能算法决策的风险

  

   尽管人工智能算法决策极大地提高了公共决策的技术理性,然而,现实中人工智能算法并不完美,存在着算法偏差、偏见和不透明等风险,对公共决策循环的各阶段都可能带来不同程度的威胁,对公共决策的公正、公开等公共价值产生潜在的危害,从而导致不可忽视的政治社会问题。

   (一)问题界定与政策议程设置阶段的算法风险

   在这一阶段,人工智能引发的决策风险主要体现为数据自身的偏差以及人为操纵问题引发的预测失败和偏误,由此导致问题界定与政策议程设置的偏离与错误。人工智能算法的大数据处理和预测分析技术都强烈依赖历史训练数据的特征和模式,历史数据的偏差和偏见很可能导致人工智能数据处理和预测分析结果的偏误。在问题界定时,决策者利用人工智能处理相关数据,分析并预测问题的形式及其成因,然而即使是大数据也未必能反映数据的全貌,大数据的代表性有时反而不如抽样数据。特别是当前的人工智能使用的大数据多是来源于包括社交媒体在内的互联网和传统新闻媒体,这些数据背后的用户分布不具有人口统计学上的代表性,利用这些大数据做出的问题界定和公众态度分析很可能是不真实的。更严重的是,部分社交媒体的公众态度与意见也是不稳定的,很容易受到一些突发事件、媒体倾向性报告的影响,或者受到部分意见领袖舆论操纵与网络事件的积极参与者策略性发声的干扰,这时经过人工智能分析后进行的问题界定和提出的政策议题很可能偏离真实的公众偏好,甚至反映的是部分人群和特殊利益集团的偏好。其中一个典型的现象是网络上假新闻和煽动性信息的泛滥,不仅加剧了社会分裂与政治冲突,而且容易操纵公众态度,误导政府决策行为。②

   (二)政策方案设计与决策阶段的算法风险

在政策方案设计与决策阶段,人工智能算法决策的主要风险表现为两个方面:一是政策方案受人为舆论操纵而形成虚假支持,导致政策方案“劣币驱逐良币”;二是人工智能算法预测的巨大偏差导致政策方案失败引发的政治社会风险。(点击此处阅读下一页)


爱思想关键词小程序
本文责编:陈冬冬
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/128643.html
文章来源:《开放时代》2021年第5期
收藏