返回上一页 文章阅读 登录

庄子银:大数据如何更好地服务于国家发展战略

更新时间:2021-02-24 22:46:55
作者: 庄子银  
引导市场主体依法合理行使要素定价自主权,推动政府定价机制由制定具体价格水平向制定定价规则转变。构建要素价格公示和动态监测预警体系,逐步建立要素价格调查和信息发布制度。完善要素市场价格异常波动调节机制。加强要素领域价格反垄断工作,维护数据要素市场价格秩序。

   第二,培育数字经济新产业、新业态和新模式,支持各领域的规范化数据开发应用场景。不断扩大数字经济外延,由数字产业化逐渐转向产业数字化,推动传统制造业向智能制造业转型升级,构建先进生产力,加速数据技术、产品和服务不断向各行各业融合渗透,发挥数据要素对其他生产和服务领域的协同作用;加强数据资源整合。探索建立统一规范的数据管理制度,提高数据质量和规范性,丰富数据产品。根据数据性质完善数字产权保护体系,防范数字侵权行为。完善数字化人才培育体系。

   第三,建立健全数据产权交易和行业自律机制,推进全流程电子化交易,提升要素交易监管水平。数字经济中的最重要的平衡因素是竞争。充分发挥市场配置资源的决定性作用,畅通数据要素流动渠道,保障不同市场主体平等获取生产要素,推动数据要素配置依据市场规则、市场价格、市场竞争实现效益最大化和效率最优化。因此,应打破地方保护,加强反垄断和反不正当竞争执法,规范交易行为,构建公平有序的竞争环境,引导各类要素协同向先进生产力集聚;健全损害国家安全及公共利益行为惩处机制。健全交易风险防范处置机制。根据不同要素属性、市场化程度差异和经济社会发展需要,分类完善要素市场化配置体制机制。

   第四,充分平衡数据市场中数据的资本和劳动属性,鼓励以数据要素为基础的企业家精神和创新活动,同时激励数据要素所有者增加数据数量和质量。此外,将数据视作资本存在劳动力替代风险,即支持人工智能在人类无法服务的工作领域的应用,而将数据视作劳动则是将机器学习视作一种提高劳动生产率并创造新型“数据工作”的生产技术,并认为需要大型机构检查数据平台利用数据提供商的垄断力量的能力,并确保公平和充满活力的数据劳动力市场。研究预测,数据要素驱动的人工智能在未来几十年内将使50%的工作自动化,数据劳动有可能构成国民收入的很大部分。因此,应该平衡数据要素对其他要素的替代效应,最大化发挥不同要素之间的增量互补效应。

   第五,提高数据产业相关的技术创新能力和基础设施建设水平。机器学习技术,例如深度学习,是利用大数据价值的可行方法。机器学习由大数据源驱动,适用于快速变化的大型复杂的数据集,并且可以通过云计算和边缘计算基础架构进一步改善。因此,合并大数据和机器学习有利于组织提高数据价值并扩展其大数据应用程序分析能力,而提高大数据应用程序的性能,能够进一步增加数据商业价值。为了提高这种性能,需要提高计算能力和运行效率,并减少计算资源需求和数据存储成本。此外,应促进区块链技术和云计算、大数据、人工智能等技术的融合发展,形成新的数据经济基础设施的治理手段。加强新一代信息技术创新,促进新一代移动通信、智能终端等技术研发和产业化运用。

  

   (作者为武汉大学经济与管理学院教授;武汉大学经济与管理学院博士研究生贾红静对本文亦有贡献)

  


爱思想关键词小程序
本文责编:admin
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/125271.html
文章来源: 人民论坛
收藏