返回上一页 文章阅读 登录

徐英瑾:具身性、认知语言学与人工智能伦理学

更新时间:2020-08-31 10:12:06
作者: 徐英瑾  

   摘    要:在主流的人工智能伦理学研究中, 很少有人意识到:将伦理规范的内容转化为机器编码的作业, 在逻辑上必须预设一个好的语义学理论框架, 而目前主流人工智能研究所采用的语义学基础理论却恰恰是成问题的。文章主张在人工智能与人工智能伦理学的研究中引入认知语言学的理论成果, 并在此基础上特别强调“身体图式”在伦理编码进程中所起到的基础性作用。依据此番立论, 并主张:机器伦理学的核心关涉将包括对人工智能的“身体”——而不仅仅是“心智”——的设计规范, 即必须严肃考虑“怎样的外围设备才被允许与中央语义系统进行恒久的接驳”这一问题。

   关键词:人工智能伦理学;认知语言学;认知图式;具身性;语义学

   作者简介: 徐英瑾,教育部长江学者奖励计划青年学者, 复旦大学哲学学院教授, 博士生导师, 主要从事认知科学哲学、人工智能哲学、知识论、维特根斯坦哲学等研究。

   基金: 国家社科基金一般项目“自然语言的智能化处理与语言分析哲学研究” (13BZX023);国家社科基金重大项目“基于信息技术哲学的当代认识论研究” (15ZDB020)。

   随着人工智能技术的日益发展, 对于此类技术产品的伦理学考量也逐渐进入学界的视野。概而言之, 与人工智能相关的所有伦理学思考, 都在国际学界被归入“人工智能伦理学” (ethics of Artificial Intelligence) 的范畴, 而这个学科分支本身又可分为两个小分支:“机器人伦理学” (roboethics) 与“机器伦理学” (machine ethics) 。前者的任务是对设计机器人的人类主体进行规范性约束, 而后者的任务则是研究如何使得人类所设计的人工智能系统在行为上具有伦理性。这两个分支彼此之间既有分工上的分别, 又有微妙的联系。两者之间的差别体现在:“机器人伦理”直接约束的是人类研究主体的行为, 而“机器伦理”直接约束的是机器的行为。两者之间的联系又体现在:不通过“机器伦理学”, “机器人伦理学”的指导就无法落地;而没有“机器人伦理学”的指导, “机器伦理”的编程作业也会失去大方向。

   不过, 在当前人工智能伦理学研究中, 很少有研究者意识到此类问题实质上乃是某种深刻的语言哲学-语言学问题的变种, 而不能就事论事地在应用伦理学的层面上被谈论。而笔者的相关判断又是基于如下考量:如果我们要把用自然语言表达出来的伦理学规范———如著名的“阿西莫夫三定律”———转换为能为机器识别并执行的程序语言的话, 我们就必须对人类的语言运作的本质有着一种预先的理论把握;而语言学家与语言哲学家对于人类语言机制的不同理解, 则显然又会导致对于上述问题的不同解答方式。

   此外, 也正因为一般意义上的语言哲学-语言学问题在人工智能伦理学研究中的边缘地位, 认知语言学关于“具身化”问题的见解也相应地被边缘化了。很少有人工智能伦理学方面的讨论触及如下问题:伦理编程问题不仅仅牵涉软件的编制, 而且还将牵涉“怎样的外围设备才被允许与中央语义系统进行恒久的接驳”这一问题。也就是说, 依据笔者的浅见, 机器伦理学的核心关涉将包括对人工智能体的“身体”———而不仅仅是“心智”———的设计规范。而为了支持这一看似“非主流”的观点, 本文的讨论将始自于对如下问题的“务虚”式讨论:为何伦理学必须具有“具身性”?

  

   一、从伦理学的“具身性”说起

   “具身性” (embodiment) 本是一个在认知哲学领域内使用的术语, 其主要含义是指:人类认知的诸多特征都在诸多方面为人类的生物学意义上的“身体组织”所塑造, 而不是某种与身体绝缘的笛卡尔式的精神实体的衍生物。如果我们将这样的观点沿用到伦理学领域之内, 由此产生的“具身化伦理学”的核心观点便是:伦理学规范的内容, 在相当大程度上便是为作为伦理主体的人类的肉体特征所塑造的。换言之, 伦理学研究在相当程度上必须吸纳生物学研究的成果, 而不能将自己视为与“肉体”绝缘的“纯精神领域”。

   应当看到, 将“具身性”与伦理学相互结合的观点, 并不是西方伦理学研究的传统路数, 甚至还与该领域内的思维定式相左。譬如, 柏拉图就曾将“善”的理念视为超越于可感知的物理世界的最高理念, 而康德则将道德律令视为某种凌驾于肉身领域的“绝对命令”。但随着演化论等自然科学思维范式逐渐进入伦理学领域, 越来越多的具有自然主义倾向的伦理学家开始注意到了伦理学自身的生物性根基。正是基于此类考量, 英国生态学家汉密尔顿 (William Hamilton) 在1964年提出了所谓的“亲属选择模型”。[1]根据该模型, 在假定甲、乙两个生物学个体之间具有一定的遗传相似性的前提下, 只要这种相似性与“乙从甲获得的好处”之间的乘积能够抵消“甲自身因帮助乙而遭到的损失”, 那么, 使得互助行为可能的那些基因就会在种群中传播 (这一规律, 也在科学文献中被称为“汉密尔顿律”) 。或说得更通俗一点, 依据汉密尔顿的理论, 道德的生物学起源, 很可能就是与“通过亲属的生存而完成家族基因的备份”这一隐蔽的生物学目的相关的。需要注意的是, 汉密尔顿所给出的这种对于道德起源的描述看似抽象, 其实已经触及“身体”对于伦理学的奠基意义。譬如, 前述“汉密尔顿律”的起效, 在逻辑上已经预设了一个生物学个体有能力将别的生物学个体识别为其亲属。而要做到这一点, 辨认主体若不依赖于被辨认对象的身体形态的识别, 则几乎是难以想象的。从这个角度看, 道德意义上的“共情感”很可能便是以道德主体之间在身体方面的相似点为前提的。

   对于上述的理论描述, 有的读者或许会问:汉密尔顿的“亲属选择模型”又将如何解释人类对于非亲属的其他人所产生的同情感呢?实际上答案也非常简单:“基因的相似性”实质上是一个针对特定参照系才能够成立的概念。若以其他物种为参照系, 整个人类都算是一个巨大的亲属组织, 因此, 你与地球上任何一个需要别人帮助的人之间都有着某种基因上的关联性。而按照“汉密尔顿律”, 只要这种关联度与“被帮助者从你这里获得的好处”的乘积能够大于“你因为帮助他而遭到的损失”, 那么利他主义行为就可以被激发。而在很多情况中, 对于陌生人的很多帮助形式———譬如在网上向受灾群众捐献10元———所需要付出的生物学资源其实是微不足道的, 这就使得“汉密尔顿律”所规定的相关条件在数学上变得容易被满足 (换言之, “大于”左边的乘积实在太容易超过其右边的数值了) 。或再换一个更通俗的说法:廉价的“助人为乐”行为的传播之所以并不是很难, 就恰恰是因为这些行为自身所消耗的资源不多;而与此同时, 人与人 (尽管很可能彼此是陌生人) 之间在身体层面上的起码的相似点却已经足以激发出微弱的“好感”, 以便催生那种微弱的利他性行为。与之相对应, 代价不菲的利他主义行为却往往是建立在被帮助者与帮助者之间较密切的亲属关系之上的, 并经由这种亲属关系所提供的更为强烈的“亲近感”驱动。

   不过, 笔者也承认, 上述这种基于生物学考量的道德起源学说, 并不能对人类所有的人际行为做出充分的描述, 因为作为自然存在者与社会存在者的合体, 人类的具体行为在受到生物学因素的制约外, 还会受到社会-文化因素的制约与影响 (譬如文化、生产方式、政治理念、宗教等因素对一个人的“亲密圈”的重塑效应) 。但即使如此, 生物学方面的考量依然会构成“文化重塑活动”的基本逻辑空间;换言之, 文化重塑的方向本身必须首先是“生物学上可能的”。意识到这一点的美国哲学家麦金太尔便在《依赖性的理性动物》一书中, 特别强调了伦理学研究与生物学研究之间的连续性。他指出, 如果我们将伦理学视为对人际关系根本规范的研究的话, 那么, 我们就无法忽略使得此类人际关系得以存在的下述基本的生物学前提:人类是一种离开了群体生活就必然会灭亡的物种, 因为人类的身体具有一种生物学意义上的脆弱性。“我们是否能够存活, 在相当程度上取决于别人 (更别提繁衍了) , 因为我们经常遭遇如下困难:身体疾病或伤害、营养不足、精神疾病与困扰, 以及来自于别人的入侵与无视……”[2] (P1) 也就是说, 按照麦金太尔的观点, 人类道德规范中最为基本的那部分———如尊老爱幼、帮助弱小, 等等———都是对于某些最基本的生物学需要的“再包装”, 而不是脱离于人类的生物学实际的纯粹的“文化发明”。由此不难推出:如果在另外的一个可能世界中的人类的生物学习性与现有的人类不同 (譬如, 那个世界中的人类会像螳螂那样在交配之后吃掉“新郎”) , 那么, 我们也就没有理由期望他们的道德规范内容与我们的道德规范基本一致了。

   不难想见, 如果这条“达尔文—汉密尔顿—威尔逊 (E.O.Wilson, 他的‘社会生物学’研究是汉密尔顿工作的全面升级化) [3]—麦金太尔”式的伦理学研究路数是正确的话, 那么, 此类思维方式就肯定会对人工智能伦理学产生直接的影响。这里需要被提出的最核心的问题便是:既然人工智能产品并不是任何一种意义上的“生物体”, 我们又怎么保证此类产品能够经由其与人类身体的相似性而承载了人类所认可的道德规范呢?换言之, 既然对吾辈而言人工智能体肯定是“非我族类”的, “其心必异”的结局难道不正是无法避免的吗?

   不过, 同样不容否认的是, 至少对于主流的人工智能伦理学研究而言, 人工智能制品因为其物理“身体”的不同而潜藏的对人类社会的伦理风险, 并没有被充分注意到。譬如, 著名的“阿西莫夫三定律”就表达了某种经过强制性的代码输入 (而不是身体设计) 以禁止机器人危害人类的企图。而在此路径的支持者看来, 给相关的机器人配置怎样的“身体”反倒成为一个与机器伦理无涉的边缘性问题。此外, 即使他们了解到从汉密尔顿到麦金太尔的整条“具身化的伦理学”的发展线索, 恐怕他们也会以这样的一种轻描淡写的方式来打发“具身派”的见解:既然汉密尔顿所说的“利他主义基因”本身就是以自然选择的方式植入人类的一种强制性操作代码, 那么, 人工智能专家就完全可以自行扮演自然选择的角色, 向机器直接植入这样的代码。他们或许还会补充说:既然自然选择本身并不是什么神秘的机制, 那么, 到底有什么自然选择能够做到的事情, 我们人类做不到呢?

但在笔者看来, 上面的辩驳是无力的。其一, 自然选择机制的基本原理固然并不神秘, 但是特定性状的演化历史的种种细节却很可能是难以被事后复原的, 因为这牵涉相关基因与特定生态环境之间的复杂互动。因此, 从非常抽象的角度看, 如果将自然选择机制人格化为一个设计师的话, 那么“他”对于伦理代码的编制路线便是“从下到上” (bottom-up) 的, 而阿西莫夫式的机器伦理代码的编制路线则是“自上而下的” (top-down) , 两条路径并不相似。其二, 自然选择的过程不是一次完成的, 而是通过“代码变异—引发显现型变化—参与生存竞争—筛选代码”这样的复杂流程, 渐进式地积累各种遗传代码素材的。与之对比, 阿西莫夫式的机器伦理代码设计流程, 却试图通过某种一劳永逸的代码编制工作来杜绝未来可能发生的一切伦理风险, 这无疑就需要设计者具备像上帝那样的预见力。而我们都知道, 人类是永远无法扮演上帝的角色的。其三, 自然选择的过程所积累的核心信息虽然是以基因代码的方式被加以保存的, 但是在具体的生存竞争中, 这些代码必须外显为身体的性状才能够兑现其生存价值。也就是说, 至少对于生物体而言, 其遗传代码本身就具有一种针对“具身性”的明确指向, 而这种指向在阿西莫夫式的伦理编码里是找不到的。其四, 也是最重要的, 自然演化的“设计产品”是我们能够看到的 (我们自己就是这样的“产品”) ;而根据“阿西莫夫三定律”所设计出来的成熟的人工智能产品,(点击此处阅读下一页)


爱思想关键词小程序
本文责编:陈冬冬
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/122691.html
文章来源:《上海师范大学学报:哲学社会科学版》
收藏