返回上一页 文章阅读 登录

周小川:用数学规划思维看经济体系

更新时间:2019-01-31 22:04:50
作者: 周小川  
按经济学讲就是影子价格。因此,约束条件对应了用影子价格衡量的代价。企业多雇一个人,给他的报酬取决于多雇一个人对目标函数实现的边际增量(是边际而不是平均的)。经济学中边际的概念,可以更准确地描述为数学规划测度的影子价格问题。影子价格恰好是线性规划里的拉格朗日乘子。这个思维对经济分析是很有益处的。

  

   拉格朗日函数可以将不同层次的数学规划联系起来。数学规划还有一个有意思的问题是大数学规划模型套小数学规划模型,小数学规划模型还可套更小的数学规划模型,用拉格朗日函数将数学规划问题转为函数形式就当作约束条件来用,对不同变量求导推导出一组优化条件,经济达到这组条件就实现优化配置。要实现优化配置,就要用影子价格做激励机制。顶层数学规划的条件组一部分是由次一层数学规划的拉格朗日函数转化成的。以消费者行为为例,消费者效用最大化是较低层的数学规划,可以优化出消费者效用最大化的行为,而消费者行为的约束条件,即消费者支出小于收入又是从另一个涉及劳动与休闲、储蓄与花销行为的优化模型推出来的,这样就把大的问题和小的行为问题联系起来了。2008年金融危机以后,出现了大量对宏观经济模型的批评,认为缺乏金融机构的行为,偏离现实。过去金融机构行为都被简化掉了,认为在制度条件下有存款就会都转化成贷款,不用考虑金融机构的行为,但危机表明,必须关注恐慌、惜贷等金融机构行为,否则经济分析就会出漏洞。这样,就有必要先构建金融机构自身行为的优化模型,通过拉格朗日函数及其关联,放到顶层的宏观模型中去。

  

   总的来看,数学上还没有真正解决动态规划问题,因此动态规划处理复杂问题相对更困难,可以更多依靠模拟( Simulation)来作比较分析,就像罗马俱乐部把世界几十年后环境资源无法承载的模拟结果展示出来。通过数学建模,能够发现很多问题,比如目标冲突、不可能性问题、对偶问题等,可以开拓思维,有很多研究题目可以继续深入。

  

   此外,理解和运用数学规划也必然会联系到其他一些数学方法和模型。数据的收集、运用及其概念,都离不开经济社会统计及统计模型,经济规律的发现和参数化离不开计量模型;经济行为的描述越来越需要博弈论。搞好宏观经济工作常提到调控,涉及控制系统理论和信息论。以数学模型为基础的经济分析呈现为一片又深又蓝的知识与技能的海洋。

  

   (本文为周小川的新书《数学规划与经济分析》一书的总序言,根据作者2018年7月27日在“用数学规划看经济体系”讲座的讲话整理。)

  


爱思想关键词小程序
本文责编:limei
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/114888.html
文章来源:比较 公众号
收藏