韩春晖:美国人工智能的公法规制
内容提要:人工智能的发展带来了维护安全、人权保障、程序规制、监管权限、监管机制和责任分配等公法挑战,需要公法规制予以回应。美国人工智能的公法规制体系包含了公法规范体系和权力结构体系两个部分,展现出一种综合性的公法规制路径,将立法、行政和司法相结合,力图构建一种全过程的监管机制。为弥补私法路径之不足,我国有必要提倡人工智能规制的公法路径,将人工智能系统视为一种公权力行使系统,充分且审慎地考量一些国情变量,采取综合性的公法路径来对人工智能进行有效规制。
关 键 词:人工智能 公法规制体系 公法制度建构 人工智能发展法 美国
一、引言
进入21世纪以来,人工智能已经越来越多地被应用于生产操作、交通运输、医疗辅助、新闻写作和司法裁判等领域,渗透到人类生活的方方面面。与此同时,人工智能对公共安全和公民权利的威胁也开始充分展现,因而对人工智能的法律规制也逐渐沉淀为学界的基本共识。①但是,任何对新技术领域的法律规制都必然遭遇两个难题。一是监管者自身能否具有足够的监管能力。如果监管者自身缺乏足够的专业性和技术性,将不得不接受人工智能研发者的技术监管措施,形成“做自己案件的法官”的法治困境,最终让监管者用技术措施架空甚至反噬政府部门的法律监管。比如,监管者“在询问法律应当对算法要求多少透明度之前,应当考虑程序员能够以专业的法律文本提供多少有用的解释”。②二是政府如何监管方能不影响产业创新。“过于严苛的监管将扼杀创新。”③著名的历史实例是英国于1865年颁布的《红旗法令》(Red Flag Act)。该法令对机动车规定了在城镇和村庄行驶时每小时2英里的限速,并且要求有人携带一面红旗在车前60码(55米)处进行引导。有人认为这一规制性规定限制了英国机动车产业发展30年之久。④在人工智能领域,对无人机操作奉行“视距监管”(beyond visual line of sight)原则就可能遏制无人机在运输和交通领域应用的发展。⑤
对此,现有研究尚未给出令人信服的解答。大体观之,我国关于人工智能法律规制的研究主要遵循私法路径展开,聚焦于立法规制和司法规制。此类研究常常将人工智能视为一种民事主体,主张从立法上赋予其法律人格,并由法院按照民事责任(产品责任、侵权责任或保险责任)来对其进行法律规制。⑥这一路径有着比较明显的欧盟法痕迹。2017年,欧盟表决通过的《欧盟机器人民事责任法律规则》提出了“非人类的代理人”概念。这实质上是将人工智能作为一个有目的性的系统,并赋予人工智能体民事法律人格。⑦其实,无论是何种类型的人工智能系统,如果去除人们赋予它们身上的拟人化想象,它们都是基于数据,通过算法自主学习、自主提升、自主决策的一套计算机制。其中,数据是燃料,算法是火焰。它们自身并不能成为民事责任主体,能够成为民事责任主体的只可能是人工智能系统的研发者和生产者。但是,在私法关系中,人工智能系统的生产者具有绝对的技术优势,普通公民的技术性程序权利常常被剥夺限制,导致其没有能力获取被侵权的证据,更无力在司法对峙中有效举证。可见,单一化地遵循私法路径的司法规制并不能对人工智能的损害实施充分有效的救济,更无法对危及公共安全的人工智能进行预防性规制。遵从私法路径的实践逻辑,对人工智能的预防性规制应交由人工智能系统生产者自我规制。因为,他们更能理解技术的发展前景和潜在风险,最适合制定规则和标准。
但是,“没有任何政府监管的企业自我规制是危险的”。⑧它必然导致规制动力不足、规制规则虚化、规制效果与公众利益不一致等问题,从而陷入“明希豪森困境”。因此,为弥补私法路径之不足,有必要提倡人工智能规制的公法路径,将人工智能系统视为一种公权力行使系统。作为一种公权力行使系统,人工智能的不当行使不仅可能导致私法责任,更可能导致公法责任,因而必须建构一种包含立法规制、行政监管和司法审查,以及事前、事中和事后全过程的监管机制。鉴于此,本文聚焦于人工智能给监管主体带来的公法挑战,并以美国法确立的公法规制体系为基本参照,从中汲取营养为我国人工智能的公法规制提供一些建构思路。
二、人工智能规制的公法挑战
在公法研究中,尽管对人工智能规制的法律问题仍须甄别,理论领域尚未明确,研究方法仍在探索,但其规制需求、规制目标和发展趋势已经比较清晰地展现出来,并表现为公法变革中必须回应的一些基本命题,成为各国未来人工智能公法规制面临的重大挑战。
第一,人工智能与国家安全、公共安全。比如,无人机的应用必然对飞行安全、地面安全和国家安全构成潜在威胁,并可能造成实际损害。因此,监管部门必须对无人机的飞行与操作进行必要的法律限制。一般而论,在城市公众集会区、军事、核电、机场、自然保护区等上空,或者在超过法定高度、超出视线距离的区域驾驶时,无人机的飞行活动应当受到必要限制。⑨再如,2017年微软的智能聊天机器人“阿泰”(chatting bot Tay)在开放16个小时后不得不被关闭,因为它变成了种族主义者、性别主义者,并且否认大屠杀。⑩这种算法技术的失控趋势被学者称为“算法未知”,很可能引发不良社会行动,危及公共安全。(11)哪里有风险,哪里就需要规制。显而易见,进入数字时代后,人工智能对国家安全和公共安全的潜在风险为政府监管提供了最高的正当性。而且,此类风险规制职能,只能由政府来承担。此等情形下,不论是人工智能系统生产者,还是人工智能行业组织,都不能准确识别国家安全和公共安全的红线,也没有足够的干预能力和干预措施进行预防性规制,一旦风险发生,后果极为严重,再遵循私法路径给予事后救济也往往于事无补。
第二,人工智能与权利保护。人工智能的广泛运用,既可能侵犯公民的私法权利,更可能侵犯公民的包括宪法权利在内的公法权利。比如,一个公司通过人脸识别系统自动收集的脸部数据信息可能侵犯公民的肖像权,通过智能系统发送一些营销短信可能侵犯了《民法典》第1032条所规定的生活安宁权,这些都属于民事权利。再如,在我国智慧交通体系的建设中,算法可以直接对监控查获的交通违法行为处以罚款;美国联邦寻亲处使用的算法曾误将某公民认定为“拒付抚养费的父母”,并对其开出20.6万美元的罚单。(12)此时,算法辅助甚至替代行政机关行使公权力,不仅侵犯了公民的财产权,还剥夺了公民在一般行政处罚过程中享有的陈述和申辩等程序性权利,这些属于公法权利。对于公法权利被人工智能所侵犯的情况,则只能依靠事先、事中和事后的公法规制来进行全过程治理。
第三,人工智能与程序规制。“算法黑箱”与人工智能的发展同步,它使得人工智能可以规避审查。大多数智能系统都是不透明的,用户无法看清其中的规则,也不能参与决策过程,只能接受最终的结果。这就类似于我们的数据被装进了“黑箱”,用户无从了解它们的工作原理,这样算法不仅仅是在预测和解决问题,而且有助于控制用户的行为。(13)显然,“算法黑箱”导致公众无从质疑算法的错误,难以使算法决策过程接受程序规制,还会给公民寻求法律救济增加难度。(14)反之,算法透明则有利于发展更丰富的监管框架以评估和解决数字政府条件下算法应用的可问责性问题。(15)因此,人工智能系统的算法运用,应当以公法程序建构为中心来探索有效公法规制机制。比如,美国科学院风险感知与沟通委员会设计了完善风险沟通程序,让各方主体之间交换有关风险性质、相关信息及趋势预判,表达对风险事件的关注、反应和评估,或者研究制定政府部门在风险管理方面的法规和措施。(16)
第四,人工智能与监管权限。出于安全和人权的绝对优先性考虑,政府对人工智能规制的正当性毋庸置疑。从法理上来说,任何权力的行使都必然受“比例原则”的约束。(17)2020年11月,浙江省富阳法院对“人脸识别第一案”做出判决,法院在判决书中明确提出人工智能系统收集指纹和人脸等个人生物识别信息必须遵循“合法、正当、必要”原则,遵循确保安全原则,不得泄露、出售或者非法向他人提供,否则其信息收集行为违法。(18)该案就是运用比例原则进行司法审查的典范事例。如何贯彻比例原则清楚界定行政监管的权限,是各国人工智能公法规制的普遍难题。其中,审查人工智能系统所收集的数据是否是必要的最为困难。比如,为了预防恐怖袭击,收集指纹一般就可以确定恐怖分子的身份,无须收集脸部生物识别信息。但是,基于“安全胜过后悔”的风险预防原则,人工智能系统可能倾向两类数据都收集,以便两类证据相互验证。此种情形下,比例原则实际上被架空了。
第五,人工智能与监管机制。在西方,对新兴产业领域的监管措施一般强调法律监管与技术监管并重。因为在新兴技术领域,法律监管措施愈来愈被规避,借鉴和运用相关技术进行监管成为不得已的选择。技术监管措施的重点在于将法律命令转化为技术编码和操作指令,使技术系统成为强有力的监管工具。它为监管者提供了企业的视角,使监管者持续地参与风险分析;并且,它要求各监管机构参与整个监管过程,加强监管合作。(19)人工智能的公法规制,也应当改变过去政府单向的“命令—服从”的监管机制,探索算法规制的合作监管机制。目前的算法规制实践中,各国探索并建立算法伦理审查、算法及数据集缺陷检测机制、算法标准、算法解释、算法查验、算法认证、算法应用登记等规制手段,初步形成了算法规制谱系的轮廓,但仍须调整规制思维和规制策略,努力构建一种合作监管的法律机制。(20)比如,国家完全可以建立某种形式的“算力池”供公众利用,既可以降低个人研究算法、开发算法应用的成本,又可以促进社会公众对算力资源的平等利用,还可以使公民在算法侵害面前有更强的防御能力。(21)即便合作监管机制已经确立,如何明确各种规制工具的应用场景、技术条件及功能,也仍是人工智能系统规制面临的一项艰巨挑战。
第六,人工智能与责任分配。责任归属问题是所有政府规制的核心问题,必须遵循“权责统一原则”,具体包含两个要求。其一,权责主体相一致,即有权力就有责任。比如,对于技术风险犯罪的公法规制,必须在技术发明者、使用者和管理者多元风险主体之间进行公平的责任分配。“治理技术风险犯罪的生成机制表明,技术风险来源于多元风险责任主体,并且社会非正式力量在技术风险犯罪的治理中发挥了史无前例的重要作用,因为他们是技术的发明者、使用者和管理者。”(22)其二,权责程度相适应,即行使了多大权力就承担多大责任。(23)在人工智能领域,由于责任主体多样、责任大小不一、担责能力不同,监管主体要进行责任精准分配尤为艰难。比如,无人机的飞行损害情形多样,责任归属的确定也存在难度。在远程驾驶时,无人机可能因驾驶错误、技术故障或远程控制失灵而造成他人损害;在自主飞行时,无人机也可能因计算机错误造成他人损害。此外,无人机还可能窃取国家机密、侵犯个人隐私、造成噪声污染等,损害国家利益和个人权益。(24)凡此种种,无人机所有者、制造者、计算机系统制造者都可能要依法承担法律责任。这些法律责任既可能是行政责任,也可能是民事责任,还可能是刑事责任。但是,谁应当承担主要责任,谁应当承担次要责任,以及谁承担主要责任更有利于公民权利保护,(点击此处阅读下一页)


爱思想关键词小程序