返回上一页 文章阅读 登录

李侠 李格菲:大数据政策制定中的认知偏差与伦理靶标

更新时间:2020-08-24 10:24:50
作者: 李侠 (进入专栏)   李格菲  

  


大数据政策制定中的认知偏差与伦理靶标


李 侠,李格菲


  

[摘 要] 要制定出高质量的大数据政策需要解决两个基础性问题,首先,在政策制定者与政策受众之间要

   消除两种认知偏差,即知识偏差与价值偏差,选择合适的政策制定模式,从而在政策目标的设定与受众的偏

   好之间形成良好匹配;其次,为了提高大数据政策的运行效率,需要挑选合适的政策工具来承载伦理靶标,

   使政策符合正义原则,基于预防原则,最大限度上保障政策受众的自由并充分分享大数据政策释放的收益。

   [关键词] 大数据政策;认知偏差;伦理靶标

   [作者简介] 李 侠,上海交通大学科学史与科学文化研究院教授,博士生导师;

   李格菲,日本早稻田大学国际文化与传播学院博士生

  

  

以互联网、大数据、云计算与人工智能为代表的新科技革命正在迅速地改变整个社会的存在形态以及我们的生活方式,而其中大数据又是其他新技术得以有效运行的基础,大数据在此次科技革命中处于绝对的基础性地位,基于此,任何事关大数据的政策制定都必须辅以伦理约束,否则,人的存在境况会发生不可逆的转变,尤其是人类的权益可能会呈现出高度不确定的损失风险。为了阻止这种现象的发生,就必须在政策制定层面加以防范。


一、关于大数据存在的认知偏差

   很多学者针对大数据的特点,对于大数据的本质提出如下一些具有共性的看法,如有学者认为:“大数据也存在一个五 V 空间:第一个维度是数量(Volume),主要表现为数据量的快速增长;第二个维度是速度(Velocity),主要表现在数据增长的速度在加快;第三个维度是多样性(Variety),即数据的来源和新的种类的增加;第四个维度是价值(Value),即对这些数据的使用和挖掘产生价值;第五个维度是数聚(Variable),让数据实现从量变到质变的飞跃。”[1] (Pxxvi) 关于大数据的这个五 V 模型中,前三个维度主要关注大数据的物理特性,后两项则是与人和机构有关,因此,关于大数据政策制定中的伦理考量也多发生在后两维中。众所周知,任何政策的制定在目标集里都包含如下三种政策子目标:国家意志、资源配置与对受众的激励机制。高质量的政策一定会尽量在政策的各项子目标与政策受众的偏好之间达成最大限度上的一致,具体而言:国家意志与受众认同有最大的交集,在资源的分配上体现公平,在激励层面与受众的偏好、动机高度匹配,只有政策制定者与受众在这三个子目标之间形成最大限度上的共识,政策的效率才能体现出来,即“状态—结构—绩效”符合预期,究其原因在于,政策被受众群体高度接受并在社会中以低阻力状态运行。为了实现这种效果,在政策制定者与受众之间需要解决两个认知上的共识问题:知识共识与价值共识。

   由于大数据的兴起是很晚近的事情,早期的关注者大多集中在学术界与企业界,真正进入公众视野的时间也就是最近 3-5 年的事情,公众对其了解并不深入。然而,由于中国文化的高度实用主义取向,导致整个社会关于大数据在知识层面上,依旧延续了中国人百年来一贯的对于科学的高度认可的态度,这就意味着公众与决策者在大数据的知识层面是达成共识的:即大数据对于个人与社会来说总体上是好东西,也许在对大数据本质的理解上存在千差万别的差异,但是至少这种知识层面的共识对于一项新事业的推动与政策的制定至关重要。现在的问题是,在大数据价值层面上的认知仍然存在严重的信息不对称现象,导致大数据政策的制定缺少直接推动力,即公众不清楚大数据会给自己带来什么样的益处?以及由于数据的共享导致的成本 -收益是否符合经济原则,正是由于缺少价值层面的利益分配结构的明确化,导致公众对于大数据的态度处于不抵触、默认与观望态度,这种认知上的分布格局,导致大数据战略的社会运行远没有达到理想状态。基于这种认知差异,可以把当下大数据政策的制定模式梳理出来:C 型和解性政策:所谓 C型政策制定模式是指,社会在大数据的知识层面有高度共识,而在价值层面则处于缺乏共识的状态。和解的本意就在于明确对于大数据价值的社会分配方案,以此推动大数据战略的落地生根以及提升其运行效率。见表 1:

  

  

   为实现政策目的,任何政策的制定在其起始阶段都要对其未来发展做出研判,大数据政策的制定同样遵循这个路径,这个前提判断就是政策制定中的预防原则。任何一项新技术都潜在具有“双刃剑”效应,尤其是对其负面效应还没有完全展现的技术必须预先做出研判,否则会导致灾难性的后果。仅就大数据的运行而言,由于缺少严格的约束,其副作用已经很明显,这些副作用归纳起来包含三个层面的危害:个人隐私的泄露造成的诸多危害、企业信息泄露带来的商业利益损失以及国家信息的泄露造成的安全隐患等等。K·米歇尔与 K·W·米勒在研究中指出: “从个人层面,大数据正逐渐演变成个人用户的数字化基因(digital DNA),且呈现出比我们自己更了解自己的习惯与需求的趋势。从企业与国家层面,对用户/公民信息的过度监管一方面帮助企业/国家机器做出符合利益需求的决策,一方面也面临着关于碾压人文精神的苛责。”[3] 那么,大数据政策制定的预防原则应该采取什么形式呢?按照美国法学家凯斯·R·桑斯坦的观点: “当风险具有巨灾性最差情形时,就可以采取特定措施消除这些风险,即便现有信息不足以使规制者对最差情形发生的可能性做出一个可靠判断。”[4 ] (P116) 在实践中,基于具体情况,预防原则还有强弱之分,即强势形式与弱势形式。强势形式是指: “只要是损害可能会发生,而非等损害已经发生之后,就应当采取那样的行动以纠正这个问题。”[4] (P121) 从而达到决策过程的安全边际。对于大数据相关政策的制定不宜于采取强势预防原则,毕竟其风险还是可控的,因噎废食的做法很容易阻碍新生的大数据事业的快速发展。为了使大数据产业获得整个社会的认同,需要把影响政策运行效率与表现滞后的相关认知差异以及承载伦理约束功能的政策工具挑选出来,基于此,才能制定出具有前瞻引领作用的高质量政策。


二、大数据政策制定中的伦理靶标与关切

   任何政策都是制度的产品,而制度则是一个国家在特定条件下形成的一系列指导行为的规则与准则等的集合。在实践层面任何政策都要体现出对政策受众的公平对待,这就是政策制定的伦理关切。一项政策要获得政策受众的接受与认同,必须确定恰当的伦理靶标,通过伦理靶标把政策理念与目标传达出去。所谓伦理靶标是指通过政策工具的选择把政策的伦理关切传递出去,并与政策受众的内在偏好与动机达成最大限度上的匹配,从而可以使伦理价值随附在政策工具上,这时承载价值诉求的政策工具就是伦理靶标。任何高质量的政策必须提供明确的伦理靶标。通常在政策生命周期内,伦理靶标比较恒定。一旦政策的伦理靶标发生偏转,也就意味着原有政策的终结。这里需要提及的一点是:一旦靶标与受众偏好不一致,不一定意味着靶标选择错了,有时候也许是其超前于受众的认知水平。因此,两者不匹配时,需要仔细分析问题到底出在哪一方?而不能武断地把板子都打在政策的屁股上。结合上面的分析,可以清晰发现大数据政策制定的伦理靶标取向有两个:其一是形而上层面的自由与安全;其二是形而下层面的价值分配。由于大数据政策涉及三类政策受众:个人、企业与政府,基于此,形而上层面的伦理靶标根据受众的差异可以分为三类:对个人而言,人们关心的是自由与安全(现实中以隐私保护为代表);企业则关心商业利益垄断;政府关心的则是国家安全。因此,大数据政策制定在形而上层面的伦理约束就必须把这三方面的关切结合起来,然而这三种关切很多时候是存在严重冲突的,总体而言,由于三类主体在力量方面存在的完全不对称性,导致个人层面的伦理关切很难被合理考虑,换言之,个人在大数据时代是庞大的、分散的弱势群体,这就需要政策在制定之初就必须对三者之间的平衡给予充分考虑,下面是三种伦理靶标关系的示意图:

   从图 1 可以清晰发现:三类政策受众的伦理靶标的实际关注度是明显不同的,而且各自集中在不同的行动空间内:政府的伦理靶标集中在公共领域,因此国家安全受到高度关注,企业的伦理靶标集中在社会领域,商业利益受到的关注度次之;个人的伦理靶标位于私人领域,隐私受到的关注度最低(保护力度很差),这也直接说明了为什么个体对于大数据的发展充满担忧的深层原因。另外,随着大数据挖掘技术的发展以及算法的改进,一个可以预见的未来就是:私人领域会被社会领域与公共领域逐渐压缩与侵占,这就不可避免地导致隐私的终结与个人自由的丧失,出现英国作家奥威尔在小说《1984》中所描述的被无处不在的老大哥实时监视的社会境况将不再是预言,这才是个体层面对于大数据发展的形而上之忧。为了剖析大数据背景下私人领域的嬗变,需要对两者的结构与功能做些简单的剖析。

  


按照哲学家阿伦特的说法: “公共这个词表示内在紧密联系但并不完全一致的现象。首先,它意味着,任何在公共场合出现的东西能被所有人看到和听到,有最大程度的公开性。对我们来说,显现—— — 不 仅 被 他 人 而 且 被 我 们 自 己 看 到 和 听到—— — 构成着实在……不过,还有许多东西无法经受在公共场合中他人始终在场而带来的喧闹、刺眼光芒;这样,只有那些被认为与公共领域相关的,值得被看和值得被听的东西,才是公共领域能够容许的东西,(点击此处阅读下一页)

本文责编:sunxuqian
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/122606.html
文章来源:作者授权爱思想发布,转载请注明出处(http://www.aisixiang.com)。
收藏