返回上一页 文章阅读 登录

周剑铭 柳渝:机器智能、判断与中国传统逻辑

更新时间:2018-07-29 23:17:38
作者: 周剑铭   柳渝  

   摘要:人的判断与机器的判定的关系表达为“判定问题”,这既是算法理论的核心问题,也是人工智能理论的基本问题,与确定性与不确定性的关系密切相关。不确定性问题(NP)与确定性问题(P)相对,P与可计算性概念等价,但NP不能由可计算性定义,而是逻辑上的不可判断性(Entscheidungsproblem)。逻辑形式化方法具有自身本质性上的困难,在判断与判定的层次关系上与算法相缠绕,在人工智能上与人、机关系相缠绕,实质上是自身无法克服逻辑形式与人的认知主体性的缠绕关系。中国传统逻辑具有对象、内容、表达与推理相一致的自然理性,中国传统逻辑的基础是非形式化推理过程在自然语言中实现的直觉判断(洞察),以现代观点来看,中国传统逻辑在高阶和多层次统一的意义上和西方的形式化本质的逻辑学是互补的,可以给机器智能与人的智能的内在关系上带来洞察的思想。

  

一 逻辑学:推理、“判定”与“判断”

  

   逻辑学是关于思维推理形式的研究,其推理的正确性是由形式关系决定的,最终的形式关系就是“真”与“假”,它们是全部逻辑学的基石。 

   在逻辑学研究中,作为思维过程,“判断”与“推理”具有相同的本质,可以说,“判断”是“推理”的实时执行过程,比如“三段论”(大前提、小前提、结论)就是由三个判断过程构成的,所以,逻辑推理、逻辑判断也就称之为三段论推理。在所有逻辑学书本中,“逻辑推理”与“逻辑判断”在适当的上下文中是可以相互替代的。因此,“逻辑学是关于思维推理的形式的研究”与“逻辑学是关于思维判断的形式的研究”是同义的。

   在逻辑学中,“真”与“假”是没有语义的最基本的纯粹的形式关系,因此,“(形式)假”仍是有逻辑意义的,不涉及任何语义问题。虽然不涉语义,但这种本质的形式性质却具有一个隐含的本质——可执行性,在算法理论中由我们称之为“实时时间” (actual time)被隐含在算法本质之中,这也就是人们认为能代表“算法”这个概念中的一个本质性——“机械步骤”所具有的神秘性。而在逻辑学中,这种可执行性就是由逻辑“判断”这个术语所表达的,就是说,逻辑“真”、“假”的执行意义就是“判断”。  

   在逻辑学中,作为逻辑纯粹形式的“真”、“假”值,就是作为逻辑判断的可执行性本质的二次形式表达,即,通过形式化表达而判定自己的“真”与“假”,比如,任何一个原子命题就可以表达这个 “陈述自身的自身”的逻辑值“真”或“假”,也就是说,这个“真”与“假”值表现了具有判定性质的逻辑命题对自己的判定。比如,原子命题“雪是白的”是一个逻辑判断的陈述,这个表达形式的逻辑学意义无涉语义,因此可以用符号式替代——S是P,这是第一层次的逻辑判定;而这个逻辑命题的“真”、“假”值是对这个命题的自身逻辑性质的判定,因此在第二层次的判定意义上,逻辑真值是“判定的判定”。

   我们以“判断”(judgement)这个术语作为逻辑真值的二次判定区别于前述的作为一般逻辑形式实时意义的“判定”(decision)。“判定”decidement的拉丁词根意义是cut,“切”的意思,也就是“裁决”,(yes或no);而“判断”judgement则具有审判、评价的权力或能力的意义,并不强调判定结论(yes和no),因此这两个词在自然语言中也是有细致的意义区别。在自然语言中可以根据上下文语境理解“判定”和“判断”的细微差别。

   对逻辑学具有自身本质性的基本概念的内涵深层揭示,是形式化方法本身无能的,因此借助对西方逻辑自身的形式本质中所隐秘蕴含的直觉因素的分析,可以为理解非形式化的中国传统逻辑的性质和过程提供比较学、语言理论、认识论和哲学分析上的支持。

  

二  “判定问题”(Entscheidungsproblem):P vs NP 与AI


   在算法和计算机理论中,“确定性问题”指可以用算法确定性解决的问题,图灵的工作表明,一类数学问题可以通过确定性的工具方法得到确定的解答,这类问题的困难程度与解决问题的算法或机器能力是相适应的,这种“可计算性”的“确定性”性质在算法理论上是以“多项式时间”P(Polynomial Time)这个概念精确地定义的,具有“线性”性质,但在算法理论中,并没有具有一种与多项式时间P相对的具有实质意义的“指数时间”这个概念,代替的是“不确定性多项式时间”(Nondeterministic Polynomial Time)或“不确定性图灵机”(NDTM)概念,而NDTM的本质是TM,是与多项式时间P等价的“确定性计算”,即图灵机(Turing Machine)。这种概念内涵的偷换过程带来了难以察觉、难以克服的思想和理论上的混淆和混乱。

   “确定性问题”只是我们所面对的问题中一小部份,大量的是“不确定性问题”。不确定性问题的性质一直是人类认知和知识领域中隐含得很深的一种困惑,计算机强大的解决问题的能力(P)给人们带来了一种观念上的错觉:(所有的)不确定性问题最终可能是可以确定性解决的,但即使这样,人们并不能排除“不确定性问题”与“确定性问题”在本质上完全不同这样一种认知上的直觉,这种认知和理论上的复杂性和困惑造成了所谓的世纪难题——P vs NP。

   但实际上,这个问题在数学上早已被希尔伯特提出(Hilbert's tenth problem),并由图灵在1936年论文解决(On computable numbers, with an application to the Entscheidungsproblem,图灵的解决与Hilbert's tenth problem一起我们简称为the Entscheidungsproblem)。简要地说,所谓“ ‘判定问题’不可判定”,这并不是悖论,实际是指:所有逻辑上的“判断”问题不可能全部由算法“判定”。这就把算法、算法计算与逻辑判断、判定之间的层次关系系统性地划分开来。但这些精深的成果和意义并没有得到充份的理解,而且似乎被人们遗忘了,这个情况在理论上和学术史上的意义和影响远非寻常。

   不确定性问题(Nondeterministic Problem)和不确定性(Nondeteminism)这两个概念深深地植根于人类的基本认知和理论研究的内核之中,人类通过知识、方法和工具去实现对确定性事物的把握和对不确定性事物的控制,人的能力和机器的能力的关系互补而且缠绕难分,因此,当机器的自动能力发展成为今天的”人工智能“(Artificial Intelligence,AI)时,这种人、机关系的深层次和多层次缠绕的困难和困惑就在当前迅速发展的人工智能研究中产生了严重的问题,人、机之间的工具性、技术性关系现在已经上升为人、机之间的伦理关系,成为了对人类智能和人类历史地位的一种前所未有的挑战。

   不确定性问题(NP)与确定性问题(P)相对,P与可计算性概念等价,但NP不能由可计算性定义,而是逻辑上的不可判断性(the Entscheidungsproblem)。逻辑形式化方法具有自身本质性的困难,在判断与判定的层次关系在算法上与P vs NP相缠绕,在人工智能上与人、机关系相缠绕,实质上是自身无法克服逻辑形式与人的认知主体性的缠绕关系。

  

三  “机器智能”(AI):“学习机器”与“机器学习”


   寻找能代替人的体力和智力的方法和工具一直是人类自古以来和努力,从钻木取火到算盘、各种自动机、以及智力玩具等,最终都以对人的智力能力的模仿为基本方向,主要以机器形式实现。

   人工智能基本上就是以机器实现对人的能力的模仿,当前被称为“联接主义”人工智能学派就是对人的智能的基本结构——人的神经系统的构造性模仿,即人的智能结构的物理模型化,当前主流的人工智能模型ANN (Artificial Neural networks)就是这样的一个基于神经元突触联接的物理模型(Agent)。与此相对,所谓“符号主义”就是对ANN模型的功能的函数化拟合,这是通过在计算机中的算法建模实现的,而当前人工智能研究的主流“机器学习”主要就是使人造的机器具有“学习”功能而能够在智力这种最基本的能力上实现对人的智能的模仿。

   历史地说,“人工智能”(Artificial Intelligence AI )就是“机器智能”,“人工智能”这个概念侧重人造机器在技术上所产生的智能,而“机器智能”则强调机器所表现的智能的本质性,因此图灵真正关心的是:“一个机器能不能做成超临界的?” 即能否使机器具有机器自身能力的超越性?这个思想与他对“判定问题”的研究是一致的。

   图灵的“计算机器与智能”(Computing machinery and intelligence)这篇文章的第7章就是以Learning Machines(学习机器)为标题的,图灵的“学习机器”与现在流行的“机器学习”几乎是二个完全不同的概念,虽然二者在内涵上是一致的。我们强调,图灵一直的作为机器的创造者的角色进行思考的,他主要思考的是机器的“状态”,所以他细致地分析了机器的“亚临界”与“超临界”状态,这两种状态,以我们现在习用的术语来说,这就是“线性的”(多项式时间)和“非线性的”(指数时间)两者本质的不同。"一个机器能不能做成超临界的?"这个问题的最大困难在于,从工程学和技术理论的角度上,无法回答这样的问题,以我们今天的理解,这种情况实质是人的问题而不是机器的问题。换句话说,图灵的“学习机器”与现在的“机器学习”这两个概念的不同就在于人(研究者)在人、机关系中的地位,这也就是我们一直重视的人工智能研究中蕴含的人、机伦理关系。

   图灵始终以创造者的身份考虑“学习机器”的可能与不可能。对于他来说,算法与“机械步骤”都是功能性的,即“能行的”、“线性的”,对于专家或普通人这都不成为问题,真正的问题是——按照图灵的说法:“一个机器能不能做成超临界的?”即能否使机器具有机器自身能力的超越性? 

但这个人工智能研究的深层问题并没有被现在广泛关注AI人们意识到,人们关心的只是如何发明、设计更好的算法,去实现“机器学习”,并不关心“机器学习”的能力本质是什么。“机器学习”这个概念完全没有考虑超过可计算性本质的算法是否可能的问题,完全没有意识到图灵所思考的“机器智能”在自身本质上的限制。(点击此处阅读下一页)

本文责编:limei
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/111236.html
文章来源:爱思想首发,转载请注明出处(http://www.aisixiang.com)。
收藏