返回上一页 文章阅读 登录

周剑铭 柳渝:机器智能、判断与中国传统逻辑

更新时间:2018-07-29 23:17:38
作者: 周剑铭   柳渝  

   当前人工智能研究的真正核心问题似乎还没有被人意识到,“机器学习”并不关心“机器学习”的本质是什么,这实质是一种建立在还原论原理基础上的机器技术,人们关心的只是如何发明、设计更好的算法,所以被有识的专家们贬称之为“电力”(electricity)或“炼金术”(Alchemy)并不冤枉。在人工智能发展的历史高峰上,马文明斯基1969年提出人工神经网络无法具有异或功能而成为人工智能进入低潮的“咒语”,今天在人工智能取得重要成果的热潮中,已经有专家频频提示人工智能发展的“寒冬”、“瓶颈”,这种历史的再现说明了人工智能的研究并没有真正触及到自身的本质问题。

  

四 算法、逻辑、人工智能与“智能哲学”

  

   形式逻辑的符号化是经典逻辑和现代计算机实现的理论和物质基础,没有布尔符号逻辑就没有现代计算机的硬件(芯片)构成,因此算法与形式逻辑的一致性既是本质的也是事实的。同样,“算法不可判定性”对于计算和逻辑判断的限定也是一致,命题逻辑和等价的布尔逻辑具有相同的局限性。在逻辑学上说,命题逻辑和与其等价的布尔逻辑一直处在自身的封闭性中,谓词逻辑、高阶逻辑存在难以逾越的现代逻辑学中的基本难题,这些困难问题与其哲学性质密切相关;这种困难在算法理论和算法复杂性理论中就是以P与NP的关系表现的;与此相关的另一个正在突现的问题就是人工智能研究中所隐含的机器智能与人的智能的关系。

   在一般意义上,人工智能区别于计算机实际是计算机求解的确定性问题与更广泛的求解不确定性问题之间的区别,就是说,这种区别意义上的人工智能应该是能(近似)解决不确定性问题的机器(Agent)能力。在图灵机的意义上,算法就是算法机器(丘奇-图灵论题),所以超出机器(图灵机)算法能力才是“机器智能”。因此,在这个意义上的人工智能也就是机器智能。实际上,1955年达特茅斯会议所确定的术语“人工智能”即相关的对象与当时的信息论、控制论几近相同,当时的专家们并没有对“人工智能”这个概念的清晰认识,历史地说,“人工智能”这个概念是在一种模糊的共识中被广泛接受的,这种模糊所隐含的真正意义就是:人工智能是能够(最优近似)解决不确定性问题的机器智能。这是我们通过对算法理论、NP理论和智能哲学的长期研究而得到的认识。

   人工智能主要是从技术领中发展起来的,迄今为止,人们对人工智能的研究大体上仍然处于这种层次,人工智能研究主要也就是处理人、机技术关系,大体上就是机器如何模仿人的行为或思想,包括模仿人的“学习”,所以“机器学习”实质是学习(模仿)人的学习的机器,这种双层意义叠合几乎无人察觉。

   人的“学习”是一种“智能”行为,人们常说“思想支配行为”,在某种程度上,人的“思维”和“行为”作为功能都可以分门别类地机器化、形式化、符号化或者它们的相互结合,如“符号逻辑”和“机械步骤”,这两者的结合的就是现代电子计算机,但人的思想和人的行为的生成性关系却是无法形式化、无法复制的,这种生成性超越也是生命的有机性区别于机器物理性和符号的还原性的本质,在这种理解上,逻辑学不过是“不原论”的最纯粹、最精致的形式。

   人工智能的本质性研究应建立在机器智能与人的智能的本质及其关系的研究上,但由于人的智能并不是一个已经解决了的哲学问题,“智能”作为一个抽象的概念,并没有对应的实体性,人的大脑和神经系统结构和生理过程并不等于人的思想或智慧,人的智能不能成为实证的科学研究对象。因此,在不知“智能”为何物,或者不能清楚地定义“人的智能”与“人工智能”这两个概念的情况下,设想一般性地研究“智能”的科学理论和方法就如显微镜、试验仪器、试验室等实证性之类研究方法,本身就不符合基本科学精神。

   历史地看,由人、机之间的工具、技术关系上升为人、机之间的伦理关系,是人类认知的一个巨大进步,从这一点上说,机器的进步因人的进步而有意义,而这个问题的困难性正是对“人”这个概念的理解的不确定性产生的,而不是由对“工具”这个概念的不确定性产生的,无论是“工具”的构造或原理,包括自动化原理都是可以实证性地研究和开发、使用的,无论如何强大,自动功能不能自动成为目的,机器的自动不能成为目的本身。

   所以人、机伦理关系中真正关键在于对机器工具的“自动”性质的理解,人工智能与生物或生命的“本能”、“智能”的区别,不在于能力的相互比较而在于他们的本质不同。或许可以说,机器的自动能力无关本质,比如机器无限产生自己或机器同类而争夺人类的生存,但这正是出于机器的本质,机器永远不会产生一个本质相异的自己或同类,而生命、人和人类正是在自己的历史进程不断地超越自身、包括自己所创造人文环境而不断进步的。所以,人、机伦理关系基于人和人的历史过程而不是基于机器的功能能力。未来的机器能否把包括人类在内的宇宙历史看成是自己的历史,不是由机器能力决定的,而是由历史决定的,而这恰恰就是中国文化中的本质人性。

   人工智能的研究中隐藏的本质性问题通常以人、机伦理关系的问题出现,这是由于人工智能的发展所引发的对人的地位的挑战而被社会各界广泛注意的,但人类的知识和认知对此远没有做好准备,以至成为一种知识界的恐慌。真正全面地研究人的智能和机器智能的本质和它们的关系,广泛而深刻地与社会学、哲学人类学、语言知识理论、认识论和哲学基本问题相关。从波普的提出而未得到发展的“世界3”理论出发,我们提出了从中国传统学术思想考察的观点和方法,借助图灵对希尔伯特第十问题的解决的历史理解,我们称之为“第三问题”,在这种视角上对人工智能基本问题的研究我们称之为“智能哲学”。

  

五  中国传统逻辑对智能哲学研究的启示

  

   “中国传统逻辑”并不是一个现成的概念,而是在与西方形式逻辑相对的意义上出现的术语,相对于西方经典逻辑的形式化本质特征,中国传统逻辑是中国文化思想“大象无形”的特殊表现。中国传统逻辑不能脱离自身的文化和历史环境,所以中国传统逻辑的现代化不是也不可能是走纯粹形式化的道路,同时也与企图突破西方经典逻辑限度的现代逻辑不同,中国传统逻辑应该在吸收高阶逻辑、现代逻辑、现代语言理论,集合论等成果的基础上,努力发展逻辑形式与语义的层级关系的逻辑结构。在这个意义上,中国传统逻辑是不同于或高于“逻辑形式”的“逻辑结构”【1】。

   中国传统逻辑是基于概念层次关系的结构性逻辑推理。在专门化的中国传统逻辑的经典案中,语言、概念的分析,语言表达的矛盾化和对矛盾的解决与西方逻辑完全不同,也与古希腊的“诡辩”(sophism)不同;中国传统逻辑不是对思维过程抽象化的形式推理,而是在思想文化、历史过程和和经典案例中理性与事实相结合的复杂层次的结构性推理。中国传统逻辑没有发展形式化的方法和学说,现在看来正是保留了这种本质的理性思想与事实的一致性。中国传统逻辑虽然不能以形式的抽象方法特别地表达中国传统文化的理性思想,但以中国哲学和中国传统文化思想的一致性的表现了自己的本质特征。因此中国传统逻辑思想始终与人的自身、世界和历史发展过程紧密结合在一起,这种大象无形的隐伏性与中国传统文化和中国传统学术思想是天然融合的,在延绵的中国文化中经典中不绝如缕。中国古代的名家和诸子学说中(如墨家)只是以一种历史偶然性表现中国传统逻辑的特殊性,弥足珍贵,但中国传统逻辑与中国传统学术思想如影随行。

   中国传统学术思想具有基于人与现实的本质性,中国传统学术理论中的“名实”之辩,就与西方哲学中古老的“共相”、“殊相”、“唯名”、“唯实”之间的论争具有相似的地位,与现代语言理论的深层结构的研究,如语言表达层次和基本概念内在构成等的研究有一种内在的共同性。如公孙龙的“六论”就是基于事物的名称、属性和层次构成关系所展开的分析性论辩。在现代集合理论中,纯粹对象之间的最基本的存在关系就是”属于“关系,这与经典逻辑形式所表达的形式关系完全不同,但经典逻辑学并不能提供对自身本质的突破,除了传统逻辑学中存在的一些基本困难外,更在谓词逻辑和高阶逻辑中留下了很多艰难的课题。

   中国传统逻辑具有对象、内容、表达与推理相一致的自然理性,直觉性在中国文化中并不是思维的低级构成部份,中国思想的直觉性是一种穿越层次的洞察。中国传统逻辑的本质是在自然语言中实现的对问题的层次性结构的直觉性洞察实现的理性判断。以现代观点来看,中国传统逻辑在高阶和多层次统一的意义上和西方的形式化本质的逻辑学是互补的。

   当今主流的人工智能ANN的实体本质性(Agent)是无法用算法或命题逻辑表达的,而现代逻辑中的非经典逻辑研究成果也无法直接引入到人工智能的研究中来,甚至没有得到特别的注意;这种困境正是造成今天的人工智能难逃“炼金术”的讥讽。但中国传统逻辑思想的非形式化本质所包含的人的因素的内在性却正是当前人工智能发展中能模糊意识到的研究方向(如对“常识”能力的特别注意),因此中国传统逻辑的现代研究可以给机器智能与人的智能的本质及其复杂的内在关系的研究带来洞察的思想。

   比如,我们从图灵的“模仿游戏”中看到的人机三层和三方关系就中受中国传统逻辑中的实体性和人的因素的内含性所构成的多层复杂性启发,这种努力应该成为从人、机技术关系发展到人、机伦理关系研究的一个自然方向。

  

   注【1】按照Unilog的官方解释(www.uni-log.org/start6.html):“universal logic is a general theory of logical structures”(“通用逻辑”是逻辑结构的一种通用理论),这就强调了logical structures (逻辑结构)高于经典“逻辑形式”(logic form),但“Universal logic is not a new logic, it is a way of unifying this multiplicity of logics by developing general tools and concepts that can be applied to all logics ”("通用逻辑"并不是一种新逻辑,它只是通过发展通用工具和概念应用于所有逻辑以联合多种逻辑的一條道路)。“The idea of universal logic is not to build a monolithic system of logic but to develop comparative study of ways of reasoning and their systematizations, promoting better understanding and knowledge of the logical realm and its connections with other fields”(通用逻辑的思想不是另建立一个独立逻辑体系,而是开展对推理和系统化方法的比较研究,促进对逻辑学及相关领域的理解和认识。)

  

   参考资料:

   [1] Alan Turing: On Computable Numbers, with an Application to the Entscheidungsproblem, https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

   [2] David Hilbert: Mathematical Problems, http://aleph0.clarku.edu/~djoyce/hilbert/problems.html

   [3] 不确定性的困惑与NP理论:http://blog.sciencenet.cn/home.php?mod=space&uid=2322490

   [4] 智能哲学:http://www.aisixiang.com/zhuanti/495.html

本文责编:limei
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/111236.html
文章来源:爱思想首发,转载请注明出处(http://www.aisixiang.com)。
收藏