返回上一页 文章阅读 登录

许成钢:人工智能、工业革命与制度

更新时间:2018-06-12 16:20:16
作者: 许成钢 (进入专栏)  

  

   随着大数据和人工智能的发展,国内相关人士引发了一场关于是否可以重振计划经济的争论。许成钢的文章从大数据产生的制度基础、数据和机器学习的性质以及人类有限理性入手,对这一争论给出了否定的回答。首先,从制度角度来看,大数据来自市场,如果消灭了市场,不仅数据无从产生,还会严重损害激励机制,导致创新无法产生。其次,从大数据本身来看,有硬数据和软数据的区别,软数据是不可传递无法度量的,这就导致大数据不可能完备;从机器学习的角度看,有热识别和冷识别之分,而热识别是机器无法学习的。再次,人类的理性是有限的,因此人的认识和推理是片面的、不完备的,甚至可能是矛盾的,这就决定了,模仿人类进行推理和规划的机器人也不可能比自然人做得更好。由此看来,建立一个前所未有的新式计划经济是不可能的。本推送共计10500字,有删节,全文刊载于《比较》第95辑。

  

   2017年7月8日,国务院发布《新一代人工智能发展规划》。9月初,俄罗斯总统普京在谈及人工智能时表示,人工智能技术发展引发了“难以预测的巨大机遇和威胁”。“谁能成为这一领域的领先者,谁就是未来世界的统治者。”在普京的眼里,人工智能不仅是重大战略机遇,而且是俄罗斯存亡的关键。

   迄今为止,在人类历史上,所有技术革命,所有创新性、革命性技术的产生和重大发展,都是从市场上产生出来的,都是以私有制为基础的企业家们创造出来的,都是市场优胜劣汰的最后结果。大力推动人工智能,这个大方向是非常正确的,但是我们要关心的是怎么做:是用计划的方法做吗?历史的教训和经济学的道理告诉我们,计划的方法做不出来。计划的方法充其量就是跟在市场的后面走,自己走不远。

   此外,在关于人工智能和制度的辩论中,有一种重要观点:人工智能可能是新一代计划经济的技术基础。例如,人工智能很重要的一个应用是在金融领域。如果机器可以决定投资,那是否意味着部分计划经济?这涉及一个非常重要的基本问题:机器收集和处理的信息来源是什么?计划什么是有效率的?计划什么是低效率的?计划的界限在哪里?

   下面我首先要解释,中国发展人工智能面临的最重要问题是制度,而不是一揽子技术问题。因为国民经济的整体状态的重要性超过一两项技术是不是全球领先。为了讨论这个问题,让我们先来看一些数据。

   2016年麦肯锡做了一次调研,发现中国的劳动生产率仅为经合组织(OECD)国家平均值的15%—30%,也就是说中国的劳动生产率比发达国家低很多倍。这意味着中国普遍较为落后。这不是在最前沿的个别领域上领先能自动解决的问题。

   以上我们看到的是劳动生产率低下。在比较完善的市场经济中,低劳动生产率伴随着低劳动力成本。但是,许多文献表明,中国的劳动力成本反常地高。经济学人智库的分析显示,2016 年中国单位劳动力成本高于美国和西欧。牛津经济研究院的调研结果表明,2016年中国劳动力成本仅比美国低4%。另一个计算方式是按照单位劳动生产率,也就是说,如果我们在中国和美国制造同样的产品,中国的劳动力成本比美国贵。

   劳动力成本非常贵,是不是意味着中国的工人拿钱太多了呢?并非如此。中国的家庭收入只占中国GDP的三分之一略强,为世界最低之一。世界上大多数其他国家,家庭收入占本国GDP的比例在一半以上。换言之,中国的工人并没有拿钱太多。

   劳动力这么贵,工人却没多拿钱,成本压在企业身上,企业也没拿到,因此是国家拿走了。政府的财政收入增长率连续二十多年超过GDP增长率,如今仍然如此。所以,政府收入占本国GDP的份额是世界最高之一,这导致劳动者和企业承担了巨大的制度成本。

   此外,在中国,由于制度原因,最盈利的行业是银行、房地产,而不是与研发密切相关的行业。作为对比,在美国,最盈利的行业是与研发密切相关的行业。

   因此,不解决制度问题,仅仅把力量集中在最前沿技术的所谓产业升级上,即便在个别产品个别行业得到产业升级的结果,也解决不了普遍的经济问题。而且,即便是专门讨论产业升级,在不解决制度问题的前提下,也只能解决个别产品问题。

  

   工业革命的负面教训

   一个流行的看法是,大数据和人工智能在引领下一轮工业革命。这一看法是有道理的。在人类历史上,国家之间拉开巨大的距离产生于工业革命。新一轮工业革命会进一步拉开国家之间的距离。

   但是,工业革命的影响并非在所有方面都是正面的。我们也需要非常冷静地回顾过去历次工业革命带来的负面教训,这些教训都来自对新技术的滥用和高估。与过去的工业革命相关的最大负面教训,就是大规模的国有制和中央计划经济。这个想法最早产生于两次工业革命的过程。一些极左翼知识分子误认为人类有能力认识一切,误认为人类有能力掌控社会所有的方方面面,进而误认为人类有能力知道所有人的福利是什么,有能力安排所有人的福利,有能力帮助人类安排所有的技术变化和生产。因此,以私有制为基础的市场经济最终会也必须被以国有制为基础的中央计划取代。以国有制为基础的中央计划经济影响了全球三分之一的人口。虽然过去80年里,技术和市场的运作发生了翻天覆地的变化,哈耶克在20世纪三四十年代的相关讨论仍然有效。

   与工业革命相伴随的对技术的滥用和误解还有另一个重大负面作用,那就是对环境的破坏。举两个例子:第一个例子是巨大的水利工程。人们以为自己有全部的能力规划河道、湖泊、陆地,可以通过建坝的方式建造前所未有的巨大人工湖,直到发生一系列灾难性后果,才意识到有大量事情是无法计划和规划的。二三十年前,国与国之间达成共识,对建造大坝极其谨慎,原则上不支持建造巨型大坝。任何大坝在建设之前,第一重要的是评价它们对环境的影响。

   第二个例子是,碳排放导致全球变暖。这是过去历次工业革命、技术发展、经济发展完全没有意识到的问题。

   现在大数据和人工智能来了,我们应当吸取以前的教训,关注滥用大数据、滥用人工智能带来的危险。当前,有一些科学家已经发出警告,但是他们大部分讨论的是基本的道德问题,机器人会不会残杀人类,我更想强调的是另外一类问题:技术与制度的关系,市场和计划之间的关系。

   当人们误认为科学技术万能,误认为某种万能的技术可以取代甚至颠覆人类文明千年积累下来的制度和人们对制度的认识,灾难就会接踵而至。比如一些政府或者垄断性的大公司,试图利用他们掌握的大数据控制社会、取代市场,这不仅会从根本上阻碍技术进步,更可能给社会带来巨大灾难。

  

   大数据、人工智能作为新兴工业革命的基础

   在没有能力处理的情况下,大数据本身并没有太大的重要性,其重要性在于它是一部分人工智能发展的基础。除了中国、美国以及俄罗斯政府外,世界上几乎所有的发达国家也都高度关注人工智能的发展,其原因就是现在各国政府已经清楚地意识到,人工智能是一场全新的、目前处在起步阶段的第四次工业革命的基础或者核心部分。这场工业革命引发的后果包括无人工厂、无人服务,可能是前所未有的超高效率,同时也可能引发大量失业。

   在前三次工业革命中,人类最重要的资源是原材料,是能源,也就是地球上的自然资源。随着人工智能的发展,大数据开始变成了一种基本资源。一大类的人工智能用数据训练机器。因此,有数据才有训练,才有智能;没有数据就没有训练,就没有智能。数据越多,量越大,资源也就越大。于是,大数据逐渐成为和原材料、能源并列的基本资源,但是这一资源本质上不同于其他的基本资源。在此之前的资源大多是天然的,而大数据是人造的,自然资源越用越少,数据却越用越多。

   人造的资源就意味着这一资源的性质、质量和数量都取决于其被制造的环境,尤其是相关的制度安排。例如,在许多意见不能表达的制度下,大数据的性质就是这些表达的缺失。而在意见能自由表达的制度下,收集到的就是所有意见表达的数据。比如“大跃进”时期大饥荒产生的一个基本原因就是信息无法传递,这不是技术问题,而是制度问题。所以,大数据不仅受制度约束,更取决于制度。

   在人工智能中,所谓智能的核心部分是算法。早在20世纪50年代,科学家就开始了这方面的探索。“人工智能”这个词、算法和其他想法,甚至一些指导性意见是几个创始人在1956年的一次会议上确定下来的。其中,重要的奠基人之一是经济学家赫伯特·西蒙教授(1916—2001),1978年诺贝尔经济学奖得主,他既是经济学教授,也是计算机和心理学教授。确切地说,人工智能从诞生之日起,就是这三个领域的联合产物。

   在各种算法当中,如今应用方面发展得最突出的,是所谓的人工神经模型。这种模型使机器可以在人的指导下学习,包括所谓的深度学习。人工智能另外一个普遍使用和探索的方法是统计算法。无论使用深度学习还是统计算法,都必须有大量的数据。这就是为什么大数据是人工智能的基础。

   人工智能的第二个基础是计算能力。在过去的半个世纪里,计算速度和存储能力基本上每两年提高一倍。现在,超强的计算能力使得无论基于哪一种算法的人工智能,在某些领域里机器都可以超过人类,而且远远超过人类。

   以上概括了为什么人工智能的基础是大数据。那么,大数据本身的技术基础是什么?这是一个关键问题,因为弄清楚大数据的技术基础,能帮助我们了解人工智能可以做什么、不可以做什么的界限。

   大数据的核心是收集、传输、存储和处理所有可度量的数据。度量的技术基础是传感器(包括录音机、摄像机等)和移动设备。通过这些设备检测到具体数据,通过互联网、物联网传送和集中,形成大数据。这里,传感器的“可度量”是大数据的关键所在,它决定了人工智能可以做什么、不可以做什么。另一类大数据是利用历史上积累的大量文献,其中包括各个学科积累的文献,比如图书馆里的文字、图形、音频、视频记录,供机器学习分析。

   所有可以通过传感器和移动设备度量的数据,都可以收集、传输和存储,但可度量是非常重要的技术条件。任何不可度量的对象,都无法变成数据,机器也就无法处理。

   在应用方面,目前人们认为最有前途的是所谓深度学习,用大数据训练机器,让它产生识别、推理和规划的能力。实际上,从开始创造人工智能学科起,人工智能就包括规划。在英语里,规划和计划是同一个单词planning。从事工程的人和其他非经济学者,往往会把这两个概念混作一团,把规划的概念混作为计划经济。

   人工智能就是用机器模仿人的推理和规划,在科学领域里,研究人的推理和规划的学科叫作决策理论(decision theory),它在很大程度上是经济学的一个部分。从这个角度讲,人工智能和经济学讨论的对象是相似的。但是,经济学讨论的是人的推理和规划,人工智能讨论的是让机器模仿人的推理和规划。

  

   人工智能和大数据的科学技术基础

所谓深度学习是一种算法。这种算法从刚一产生就和经济学的决策理论紧密联系在一起。首先,设计者要为人工智能或者机器人规定其目标,在经济学和人工智能里都称之为目标函数,也就是机器人要干什么,“活”在世上图什么。从分析的角度看,在追求其自身的“目标”方面,机器人与经济学家讨论的自然人的行为相似,(点击此处阅读下一页)

本文责编:frank
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/110438.html
收藏