返回上一页 文章阅读 登录

吕涛:回到个案事实本身

——对个案代表性问题的方法论思考

更新时间:2016-12-15 13:53:45
作者: 吕涛  

   内容提要:以实证研究基本逻辑为视角,本文讨论了个案的代表性、典型性和扩展性个案方法问题。基于概率样本代表性的立场,将个案代表性视为问题,发展个案的典型性原理以及扩展性个案方法的路径,错误理解了代表性概率抽样原理,更混淆了实证研究基本逻辑中不同环节与方法。个案研究没有个案代表性问题,它缺少的是基于特定个案材料,发现个案因果事实的方法。个案研究并非要走出个案,而应回到个案事实本身。

   关 键 词:个案/实证研究基本逻辑/代表性/典型性/扩展性个案方法

  

一、个案代表性问题

   一些定性研究学者认为,相比于基于特定个案的定性研究,基于代表性概率样本①的定量研究,其研究结论更具有普遍性。“个案研究始终面临着如何处理特殊性与普遍性、微观与宏观之间的关系问题。随着现代社会日趋复杂,对独特个案的描述与分析越来越无法体现整个社会的性质;定量方法的冲击更使个案研究处于风雨飘摇之中。”[1]而“建立在统计学基础上的定量研究以其精密的计算、无懈可击地从样本到总体的推论使个案研究相形见绌,个案研究继续存在的正当性和意义便成了亟待解决的问题。”[1]另一些学者则强调个案研究与定量研究之间在代表性问题上的不可比性。“个案研究需不需要代表性呢?这个问题可以归结为:个案是不是统计学意义上的样本?如果个案是统计性样本,那么,它就必须具有代表性;否则,它就不一定需要代表性。……正因为个案不是统计样本,所以它并不一定需要具有代表性。”[2]

   前者接受了个案研究中特殊案例存在着概率样本意义上的代表性问题,故而认为“‘走出个案’是人文社会科学中个案研究事实上的共同追求”[1],并且强调扩展性个案方法(extended case method)[3-4]较好地处理了特殊性与普遍性、微观与宏观的关系。后者强调个案研究自身的特质,故而认为“典型性不等于代表性。反过来,代表性只是典型性的一个特例(即普遍性)。代表性是统计性样本的属性,是样本是否再现或代表总体的一种性质。代表性预设了具有明确边界的总体的存在。典型性则是个案所必须具有的属性,是个案是否体现了某一类别的现象(个人、群体、事件、过程、社区等)或共性的性质;至于这个类别所覆盖的范围有多大,则是模糊不清的。一个个案,只要能集中体现某一类别,则不论这个类别的覆盖范围的大小怎样,就具有了典型性。典型性不是个案‘再现’总体的性质(代表性),而是个案集中体现了某一类别的现象的重要特征。”[2]

   然而,上述两种对个案代表性问题的分析,既错误地理解了概率样本代表性自身的技术原理,也混淆了个案在实证研究基本逻辑中的方法论意义。盲目地寻求走出个案,而忽视了实证研究基本逻辑对个案研究的基本要求——发现个案事实。

  

二、实证研究的基本逻辑

   实证研究遵循一个基本的认识论原则——理论与事实相一致。这一原则规制了实证研究的基本逻辑和过程,并且涉及其中不同环节上的方法问题。一般而言,理论指向的是作为研究对象的社会世界中的规律性,包括分类与解释。分类是基于有限属性内涵所构成的类别体系;解释则是基于对有限因素之间因果过程与关联的规律性的说明所构成的命题体系。基于整体主义的本体论假定,理论可以在由微观到宏观的不同对象层次上表述其规律性。理论总是以抽象的、一般化的普遍陈述的方式加以表达。理论表达必须符合逻辑学意义上的逻辑要求。对于社会学而言,实证研究的理论仅仅是针对自身研究领域中的特定对象逐条加以表述,而非无所不包地进行一般化分类描述和因果解释。由此就涉及如何表达理论的方法问题——方法1。事实则指向的是特定时空条件下、特定对象的特定属性或特定的因果过程。对于实证研究而言,事实即特定的、具体事实。它不是自明的,而是经由基于特定的技术手段被发现的。相应于理论的普遍陈述,对所发现特定事实的表达呈现出特殊陈述的形式。基于理论事实相一致的要求,发现事实意味着从特定的、众多具体事实中分离、识别出对应于一般理论所蕴含和针对的特定事实,而不是特定时空条件下无所不包的事实。由此涉及如何发现一般理论所蕴含的特定事实的方法问题——方法2。为了避免出现同义反复的循环论证,方法2中的技术手段原理应与一般理论无关,发现特定事实的过程应与理论表达、推理的过程相互独立。

   在理论与事实相一致的原则下,特定的实证研究必须将其一般理论与特定事实相联结。这种联结的基本方式和过程包括:基于所发现的特定事实,提炼一般化理论的过程;或者基于所发现的特定事实,检验之前已经提炼出来的理论的过程。前者涉及如何提炼理论的方法问题——方法3,后者涉及如何检验既有理论的方法问题——方法4。需要强调的是,无论以何种方式相联结,其逻辑前提在于保证“发现事实的过程”与“提炼理论或理论推理”的过程,二者之间相互独立,从而保证联结具有对照和检验的逻辑意义。

   图1 实证研究的基本逻辑、过程及相应的不同方法

   在实证研究中,理论是一般化的普遍陈述,事实则是具体的特殊陈述。故而理论与事实的一致性,是不可能在完全证实的意义上得以满足的。换句话说,二者之间仅仅是部分的一致性,事实对理论的证实仅仅是部分的确认,实证研究在这一基本的前提约束下展开研究工作,它并不会寻求、也无法发现普遍性事实。另一方面,用于发现特定事实的方法2,限制了其所发现的结果。基于不同的技术及其原理,这一结果可能是完全对应于理论所蕴含的完整的特定事实——譬如完整的因果事实,也可能仅仅是其中的局部表现——譬如因果事实的一个表象,这进而约束了选择联结理论与事实基本方式的合理路径:前者使用方法3或方法4都是合理的,后者使用方法4是合理的,而使用方法3是不合理的。提炼一般理论应基于完整的特定事实而非其中局部表现,而检验一般理论并非必需完整特定事实。后者的情况下,检验理论的基本逻辑过程表现为:首先基于既有理论,遵循演绎逻辑,推论出在使用仅能发现完整特定事实局部表现的方法2的条件下所对应的特殊命题——作为对后续所要发现的特定事实的预测,进而与后续使用方法2所发现的结果相对照,来间接检验一般理论。这种情况下,由于检验是发生在由一般理论结合其他条件演绎推理出的特殊命题上,即使特定事实与这一特殊命题相一致,这个演绎推理的过程也可能隐藏着诸如乌鸦悖论[5]等逻辑谬误,从而使得对一般理论的“确认”失去意义。而当事实与这一特殊命题不一致的时候,这个演绎推理的结构中也可能出现诸如非充分决定(underdetermination)[6]等复杂情况,从而使得对一般理论的“证伪”也失去意义。无论是确认还是证伪,实证研究都应该充分考虑“科学检验的复杂性”[7]。而对于使用方法3——即由特定事实提炼一般理论的过程,是一个归纳的逻辑过程——总是面临着“归纳问题”[8]的逻辑质疑,其合理性不是源于所发现特定完整事实的数量而是源于自然齐一性(uniformity of nature)的假定[9]。也就是说,这一合理性来自于逻辑上的分析合理性,而不是来自于事实上的综合合理性。

   无论是使用方法3还是方法4,或者将二者复合起来使用,理论与事实相一致的认识论原则和基本逻辑要求两个必要前提:1)独立性前提:即必须保证一般理论的推演过程与发现特定事实的过程相互独立。无论是提炼还是检验理论,必须使用独立于理论而发现的特定事实来与理论相联结,以避免出现同义反复的循环论证;2)确定性前提:必须保证所发现特定事实的确定性,即保证方法2充分阐明其中的技术、程序、步骤及其原理的合理性。进而以特定事实为基础提炼或检验一般理论才可能具有认识论的意义。

   基于上述实证研究的基本逻辑(图1),可以看到,定性研究中选择特定个案的过程,以及定量研究抽取概率样本的过程,指向并内在于发现特定事实的环节,二者所涉及的方法问题皆属于方法2范围。特定个案构成了定性研究中所必需的特定事实——不妨称之为“个案事实”——的材料基础,而从中抽取概率样本的有限总体则构成了定量研究所必需的特定事实——不妨称之为总体事实——的材料基础。无论是个案事实还是总体事实,在实证研究中都仅仅是特殊事实,二者仅仅是提炼一般理论的经验基础。理论的一般性和普遍性是由提炼理论的方法3和表达理论的方法1实现的,而不是经由发现特定事实的方法2所实现的。也就是说,基于概率样本的定量研究与基于特定个案的定性研究的结论之间的普遍性,即使有差别,也不是源于选择个案和抽取概率样本的方法2造成的。而概率样本所可能“代表”的仅仅是实证研究基本逻辑中特定事实环节上的总体事实,而非指向一般理论的环节。概率样本的代表性与一般理论的普遍性没有直接关系。在实证研究基本逻辑结构中,相应于特定事实的环节,定性研究所使用的特定个案与定量研究中所使用的有限总体相对应,而不是与概率样本相对应。基于概率样本的定量研究中所涉及的样本代表性问题,在基于特定个案的定性研究中并不存在。将选择个案或总体的过程与概率样本的代表性以及一般理论的普遍性混为一谈[3-4][10]134-137,显然没有考虑到实证研究的基本逻辑以及概率样本代表性自身的技术原理。

  

三、概率样本的代表性

   就实证研究基本逻辑而言,定量研究常常在发现特定事实环节需要有限总体作为总体事实的材料来源。相比于普查,从总体中抽取部分元素组合而成一个样本,并以之作为直接材料来源的做法,是受于经济成本的限制不得已而为之。这实际上为发现特定的总体事实增加了方法上的困难,必须解决如何由一个样本直接获取的信息来获知总体中的相应信息的方法问题。

   在总体选定之后,实施抽样之前,总体中某些变量的频数分布可能是已知的,而另一些变量的频数分布则是未知的。而用于发现实证研究所必需的总体事实的材料,则至少部分隐藏在那些未知的变量分布信息之中。另一方面,无论是否使用概率抽样的方式,样本仅仅是总体中部分元素的众多可能的组合结果之一。其中每一种组合结果都对应着总体中已知和未知变量在样本中的频数分布结果。实际使用的一个样本,可以理解为经历了两个选择过程:首先选择总体中部分元素加以组合,进而在众多可能的组合结果中选择一个组合结果作为实际使用的样本。这样,呈现在实证研究中的仅仅是这一个被选中的组合结果中所呈现的已知和未知变量在其中的分布信息。

   显然,如果利用这样一个样本中的信息来推论总体中对应信息的话,存在两种可能的基本思路:1)直接再现,即将样本与总体直接对照,利用特定的抽样技术手段,期待样本中直接呈现出与总体相一致的信息,期待样本中再现出总体中已知和未知变量的频数分布,在此直观意义上实现样本对总体的代表性;2)间接推算:允许样本中已知和未知变量的频数分布与总体不一致,利用特定的抽样技术手段,建立一个中间工具,以此将样本信息和总体信息联系起来,从而间接地利用样本中因抽样而扭曲的结果推算总体中相应变量、特别是未知变量的分布信息。

直接再现的方式,实际上忽略了未被选中的其他样本中的信息。由于总体中某些信息是已知的,因此可以通过非随机地、系统化地依据已知的总体信息选择元素加以组合构成实际使用的样本。对于总体中已知频数分布信息的变量而言,可以令样本再现其频数分布,或者呈现研究所需的分布特征。但对于总体中未知变量来说,则无法保证在样本中再现其频数分布信息。换句话说,就未知变量而言,直接再现方式不能保证样本在直观意义上代表总体。(点击此处阅读下一页)

本文责编:陈冬冬
发信站:爱思想(http://m.aisixiang.com)
本文链接:http://m.aisixiang.com/data/102567.html
文章来源:《兰州大学学报:社会科学版》2016年第20163期 第20-28页
收藏